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An advanced Boundary Element method (BEM) accelerated via Adaptive Cross Approximation (ACA) 

and Hierarchical Matrices (HM) techniques is presented for the solution of large-scale elastostatic 

problems with multi-connected domains like in fiber reinforced composite materials. Although the 

proposed ACA/BEM is demonstrated for two-dimensional (2D) problems, it is quite general and it can 

be used for 3D problems. Different forms of ACA technique are employed for exploring their 

efficiency when they combined with a BEM code. More precisely, the fully and partially pivoted ACA 

with and without recompression are utilized, while the solution of the final linear system of equations is 

accelerated via an iterative GMRES solver. The proposed methodology is demonstrated with the 

solution of large scale, plane strain elastic problems dealing with the bending of unidirectional fiber 

composite plates with large numbers of periodically or randomly distributed cylindrical elastic fibers 

embedded in a matrix medium.  
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Introduction 

The Boundary Element Method (BEM) is a well known and robust numerical tool successfully used for 

the solution of elastostatic and elastodynamic problems (Beskos (1997), Bonnet (1999), Aliabadi 

(2002), Beer, Smith and Duenser (2008), Manolis and Polyzos (2009)). Two remarkable advantages it 
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offers as compared to other numerical methods is the reduction of the dimensionality of the problem by 

one and its high solution accuracy. Despite the advantages the brutal application of BEM to large-scale 

problems suffers from very time consuming computations and high demands for computer memory 

capacity. Both problems come from the generation of the non-symmetric coefficient matrix and the 

solution of the final system of algebraic equations. More precisely, the fully populated matrices 

produced by BEM require O(N2) operations for its buildup and O(N3) operations for the solution of the 

final matrix system through Gaussian elimination or typical LU-decomposition solvers. The use of 

iterative solvers decreases the operation requirements from O(N3) to O(MxN2), with M being the 

number of iterations, but still remains inefficient for large scale problems. To the same conclusion we 

reach when parallel computing methods are exploited for the solution of the problem. In order to solve 

the aforementioned drawbacks of BEM and extend its application to real industrial problems, many 

techniques have been proposed so far in the literature. One can mention the Fast Multipole Boundary 

Element Method (FM/BEM) (Liu (2009)), the Fast Wavelet/BEM (Bucher, Wrobel, Mansur and 

Magluta (2003), Ntalaperas, Tsinopoulos and Polyzos (2010)), the Precorrected Fast Fourier Transform 

(FFT) Accelerated BEM (Xiao, Ye, Cai and Zhang (2012)) and the Hierarchical Matrices-Adaptive 

Cross Approximation (ACA)/BEM (Rjasanow and Steinbach (2007)).  

The Fast Wavelet/BEM relies on the fast wavelet transform so that to compress the dense and fully 

populated final matrices of BEM and change them to semi-banded and sparse ones. Although its use 

can be considered as a black box in a BEM code, appears the disadvantage of requiring the knowledge 

of the final system of algebraic equations the construction of which is in general computational 

expensive. Details one can find in the representative works of Bucher, Wrobel, Mansur and Magluta 

(2003), Ravnik, Škerget and Zunic (2009) and Ebrahimnejad and Attarnejad (2010). A very efficient 

method that accelerates drastically the solution process of a BEM code is that of the FM/BEM. The 

FM/BEM accelerates the computation of matrix [A] of the final system of algebraic equations 

[A]{x}={b} to O(N) operations and reduces the memory requirements to O(N) as well. This is 

accomplished, first, by analytically expanding the fundamental solutions of the differential operator of 

the problem around the centers of a hierarchical cell structure through fast multipole expansions, 

second, by performing analytical integrations utilizing constant elements and third, by using an 

iterative solver (e.g. GMRES) instead of a direct one. The main disadvantage of FM/BEM is its 

dependence on the fundamental solution of the problem and the use of constant elements in order to 

perform analytical integrations on flight without storage memory requirements. Representative works 



are those of Bapat and Liu (2010), Frangi and Bonnet (2010), Wang, Miao and Zheng (2010), Wang 

and Yao (2011) and Yusa and Yoshimura (2013), while the application of FM/BEM to the solution of 

composite material problems is demonstrated in the works of Hu, Wang, Tan, Yao and Yuan (2000), 

Kong, Yao and Zheng (2002), Yao, Kong, Wang and Wang (2004), Liu, Nishimura, Otani, Takahashi, 

Chen and Munakata (2005), Lei, Yao, Wang and Wang (2006) and Wang and Yao (2008). The 

precorrected FFT/BEM is a method that accelerates less than the FM/BEM but utilizes the same idea of 

cells as the FM/BEM does. The idea is to project the boundary fields to a uniform grid of points, then 

to compute the grid fields by using FFT and finally to interpolate the grid fields to boundary nodes. The 

nearby interactions are evaluated directly as in conventional BEM. The result is a reduction of the total 

operations to O(NlogN). Representative works are those of Phillips and White (1997) and Xiao, Ye, 

Cai and Zhang (2012). An alternative approach to accelerate BEM is the recently proposed adaptive 

cross approximation algorithm (ACA) along with hierarchical matrices (Bebendorf (2000), Bebendorf 

and Rjasanow (2003), Rjasanow and Steinbach (2007), Borm, Grasedyck and Hackbusch (2003, 

2003a), Bebendorf (2008) and Brancati, Aliabadi and Benedetti (2009)). The acceleration here is 

achieved because only a small number of elements of the collocation matrix [A] are calculated, while 

the rest ones are approximated via the already calculated values. In a BEM collocation matrix, this is 

possible and effective due to the nature of the fundamental solutions, which are functions of the 

distance between the source and field points. According to ACA/BEM, the matrix [A] is organized into 

a hierarchical structure of blocks based on the problem’s geometry. Applying a geometrical criterion 

the blocks are characterized either as non-admissible, where the ACA algorithm is not efficient and 

thus, the conventional BEM is used or admissible, where ACA is effective and is used to approximate 

them by only calculating a small number of their rows and columns. Each admissible block is 

represented in a low rank matrix format via the product of two matrices formed by the previously 

calculated rows and columns, respectively. This low rank format, in conjunction with a usage of an 

iterative solver, results both significant reductions in memory requirements and a CPU time due to the 

acceleration of the matrix vector multiplication. The ACA/BEM has already been successfully used for 

solving static and dynamic linear elastic problems, as it is explained in Bebendorf and Grzhibovskis 

(2006), Benedetti Alliabadi and Davi (2008), Benedetti, Milazzo and Alliabadi (2009) and Zechner 

(2012) for elastostatics and Benedetti and Alliabadi (2009), Messner and Schanz (2010) and Millazzo, 

Benedetti and Alliabadi (2012) for elastodynamics. Although the FMM/BEM seems to be faster than 

ACA/BEM, it appears some disadvantages as it is compared to the ACA/BEM, namely, it requires the 



knowledge of the multipole expansions of the fundamental solution of the problem and significant and 

complex modifications in a conventional BEM code in order to be implemented. On the other hand, 

ACA/BEM is a black box algorithm applied upon the collocation matrix [A] and thus its 

implementation is the same regardless of the differential operator of the problem. The main structure of 

a conventional BEM code, including the significant integration library, remains the same and the only 

changes needed in the code are restricted to the assembly procedures. A comparison between FM/BEM 

and ACA/BEM can be found in the work of Brunner, Junge, Rapp, Bebendorf and Gaul (2010).  

In the present work, a two dimensional hierarchical ACA/BEM formulation is proposed for the solution 

of elastostatic problems dealing with multi-connected domains like those appearing in the cross-section 

of a fiber reinforced composite material. To our best knowledge an ACA/BEM for multi-connected 

domains appears for the first time in the literature and according to this formulation the matrices  and 

 of each region, formed from the integrals of the elastostatic fundamental displacement and traction, 

respectively, are approximated by hierarchical matrices, constructed by means of the ACA algorithm. 

Thus, the global collocation matrix  is not constructed explicitly, saving significant amount of 

memory. The matrix approximation is accomplished by the implementation of four ACA formulations, 

the fully and partially pivoted ACA with and without recompression in order to study their efficiency. 

For the solution of the final linear system of equations an iterative solver (GMRES) is employed. The 

boundary conditions of the problem as well as the interface continuity conditions between the 

inclusions and the matrix are applied during the matrix vector multiplication procedure. From the 

approximated operators  and  a block diagonal preconditioner is constructed for the faster 

convergence of the solution.  The efficiency of the proposed formulation is demonstrated by solving a 

large-scale elastostatic problem dealing with the bending of a fiber composite plate. For a given 

accuracy of approximation the CPU time as well as the memory demands are compared with the 

corresponding ones of the classical BEM. The largest problem solved corresponds to 1.2 million 

degrees of freedom utilizing a desktop pc with 64 GB RAM. 

2. Conventional Boundary Element method  

As it has been already mentioned, the boundary element methodology proposed in the present work 

concerns multi-connected domains and it is demonstrated through the problem described below. 

Consider a 2D rectangular fibrous composite plate of length L and width D, as shown in Fig. 1. The 



plate occupies a region Ω0 of boundary S0, is made of a matrix material with Young’s modulus EM and 

Poisson’s ratio vM and is reinforced with Nf identical circular fibers of radius a with material properties 

EF and vF, respectively. The volume fraction of the fibers with respect to the plate is Vf. The fibers are 

either randomly distributed (Fig. 1a) or periodically arranged in a square pattern (Fig. 1b). Each fiber 

occupies a region Ωi of boundary Si, where i= 1, Nf. The plate is fixed at its one end and is subjected to 

a bending load P applied at its free end.  

                                
(a)                                                                                  (b) 

Figure 1:  2D rectangular fiber reinforced composite plates with (a) randomly distributed and (b) 

periodically arranged fibers  

In the present section, the just described 2D elastostatic problem is solved numerically using first the 

conventional boundary element method for various numbers of fibers Νf.  

The problem solution can be obtained by solving a combined system of boundary integral equations 

written for the matrix and each of the Nf fibers. The boundary integral equations for the matrix and for 

the i
th

 fiber are written as: 
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S S S , x and y are points on the boundary, u and t are the displacement and traction 

vectors, respectively, c is a free term tensor depended on local geometry at point x (for a smooth 

boundary c=1/ 2I , with I  being the unity tensor) and u* x,y( )  and t* x,y( )  are the 2D free space 

elastostatic fundamental displacement and traction, respectively, given as (Polyzos, Tsinopoulos and 

Beskos (1998)). 

 

*

, ,

1 1
, 3 4 ln ,  with  ,  1,  2

4 1
kj kj k j

v
u v r r k j

E v r
x y     (3) 

*

, , , ,

1
, 1 2 2 1 2

4 1
kj kj k j k j j k

r
t v r r v r n r n

v r n
x y     (4) 

where r is the distance between the points x and y, nj the unit vector normal to the boundary at point y, 

r,j denotes spatial derivatives of r and /r n  is the directional derivative with respect to the normal 

vector at y. 

According to conventional BEM formulation, the boundary S is discretized into E three-noded 

quadratic or two-noded linear isoparametric line boundary elements. For a node k, belonging to the 

boundary S the discretized integral equation (1) takes the form 
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where A(e) is the number of nodes of the element e (A=3 for a quadratic and A=2 for a linear element), 

N
a
 stand for the element shape functions, J the Jacobian of the transformation from the global (X1, X2) 

to the local co-ordinate system  and 
e

au  and 
e

at  represent the nodal values of the displacement and 

traction vectors, respectively. Adopting a global numbering for the nodes, each pair (e, a) is associated 

to a number  and the equation (5) is written as 
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where L is the total number of nodes that S has been discretized into and  
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Collocating Eq (6) at all nodes L, the following linear system of algebraic equations is obtained 
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where M G
g

m are matrices formed by the integrals (8) and 
M H

g

m
 matrices formed by the integrals (7) 

with the term 1/2 added at the diagonal elements of 
M H

m

m
. The indices m and γ take values 0, 1, 2,…Nf, 



corresponding to the total number of nodes L0, L1, ,.., LNf ( 0
1

N f

i
i

L L L ) that the boundaries S0, S1, …, SNf 

have been discretized into, respectively. The vectors u
m

 and t
m

 contain the nodal displacement and 

traction vectors of the nodes Lm, respectively. 

Similarly, collocating the discretized version of the integral equation (2), for all the nodes Li of the i
th

 

fiber and applying the continuity conditions (equal displacements and opposite tractions) at the 

interface between the matrix and the i
th

 fiber, the following system of algebraic equations can be 

obtained 
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i iH u G t           (10) 

In the system of equations (9) and (10), all the nodal values of 
i

u and 
i

t  with i=1, 2, ..,Nf are unknown, 

while the half nodal values of 
0

u and 
0

t  are known through the boundary conditions at the boundary S0 

and the other half ones unknown. 

When   k, integrals (7) and (8) are non-singular and can be easily computed numerically by Gauss 

quadrature. In case where  = k, the integrals (7) and (8) become singular with singularities rlnO  and 

r1O , respectively. Singular integrals are evaluated with high accuracy via direct integration 

techniques (Frangi and Guiggiani (2000)).  

Combing equations (9) and (10) and rearranging according to the boundary conditions at the boundary 

S0, one obtains a linear system of algebraic equations of the form  

[ ] { } { }A X B   (11) 

where the vectors X and B contain all the unknown and known nodal components of the boundary 

fields, respectively. 

In conventional BEM the system (11) is usually solved through a typical LU decomposition algorithm.  

 



3. Hierarchical and ACA accelerated BEM  

In conventional BEM, the matrix A  of the system (11) is full populated requiring O(N
2
) operations for 

its solution with N being the DOFs of the problem. Taking also into account that the condition number 

of the system becomes worse as N increases, it is apparent that conventional BEM is not able to treat 

realistic problems with hundreds of thousands DOFs. In order to overcome that difficulty and solve the 

problem described in the previous section for a large number of fibers, a hierarchical ACA accelerated 

BEM is proposed. Furthermore, a significant reduction of the problem solution time is also 

accomplished with the aid of a GMRES iterative solver.  

The departure point of the proposed method is that both matrices H  and G , appearing in equations (9) 

and (10), are represented hierarchically using a block tree structure. By means of simple geometric 

considerations the blocks corresponding to large distances r are characterized as far field blocks (or 

admissible) and compressed through low rank matrices found by ACA algorithm. The rest blocks of the 

tree, which are dominated by the singular behavior of the kernels (3) and (4), are characterized as near 

field blocks (or non-admissible) and are calculated explicitly as in conventional BEM.  

The ACA/BEM methodology proposed here can be analyzed in steps as follows: 

Step 1: In this step the nodes of each region Ωi are partitioned in a tree structure. The clusters are 

created in such a way in order to contain only closely located nodes. Starting form a cluster containing 

all the nodes of the region, two sub-clusters are created. This procedure is repeated recursively for the 

created sub-clusters and is ended when the number of nodes inside a cluster is equal or less than a 

predefined number Lt, which is named the cardinality of the tree. The nodes belonging to the same 

cluster are renumbered so that the corresponding integrals of H and Gmatrices to be placed at neighbor 

rows and columns. The splitting of the clusters can be accomplished with the aid of various bisection 

techniques like the principal component analysis (Bebendorf (2008)) adopted in the present work. 



According to that technique, the centroid of each already created cluster of nodes is calculated by using 

the following equation: 
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where, cL  is the number of nodes of the cluster and 
1 2, , cL

i i ix x x  denote the coordinates of the cluster 

nodes, and 1,2i . Then, the corresponding cluster’s covariance matrix of dimensions cd L  is 

formulated in the following way: 
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where d is the number of spatial dimensions (d=2 for a 2D problem). A Singular value decomposition 

(SVD) T
Cov U S V , is calculated for the covariance matrix and the principal direction is found by 

choosing the first left singular vector, which corresponds to the maximum singular value. 

,1i iw U              (14) 

Considering the centroid as the starting point of the position vectors, the nodes of the cluster are 

separated by considering the positive or negative value of their projection along the principal vector. If 

C denotes the parent cluster, the two sub-cluster C1 and C2 containing Lc1 and Lc2 nodes respectively 

are defined as 

1 2 1: ( ) 0  , T

i cC L L C C C
c

w x x          (15) 

In figure 2 the first four levels of the node partition for region Ω0 are depicted. 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure2: Figs (a) to (d) correspond to the first four levels of the node partition for region Ω0 

 

Step 2: Matrices H  and G , in (9) and (10), can be represented hierarchically by a block tree, which 

can be set up by using the previously constructed cluster tree and a geometric admissibility criterion. 

Let’s consider the matrix M
H  in (9), of the of the region Ω0. The cluster tree of the region Ω0 contains 

L0 nodes. Both rows and columns of the M
H  can be represented by the cluster tree since their 

dimension is 2xL0. By applying a geometric admissibility criterion the matrix M
H , can be partitioned 

by the following procedure: 

1.) The root (level 0) of the cluster tree represents the total number of rows/columns. Thus, the 

combination of rows and columns at this level produces the entire matrix H  or G . By default, the 

admissible criterion for the entire matrix is false and the algorithm continues at level 1. 



2) At level 1, both rows and columns, represented by the cluster tree, are partioned into two parts. 

Thus, the entire matrix is divided into four blocks and the admissible criterion is applied equal times. In 

case a block is admissible, it is characterized as leaf and the clustering procedure is ended.  

3) In case of a non-admissible block, step 2 is repeated until, either all the blocks have been 

characterized as admissible or one of the column and row clusters is a leaf of the cluster tree (the last 

level of the cluster tree has been reached). The last level non-admissible blocks in the block tree, are 

also characterized as leaves.   

In the present work the following admissibility criterion for a block is used. Let’s consider a block of 

the entire matrix the rows and columns of which are represented by the clusters Cc and CR, 

respectively. The elements associated with the nodes, contained in CR and CC, are enclosed in two 

boxes, ΩR and ΩC, respectively. Each box has its sides parallel to the Cartesian axes and is the smallest 

possible, as shown in Figure 3. Its corners are numbered anti-clockwise with the 1
st
 and 3

nd
 corners 

being these which have the minimum and maximum coordinates, respectively, as shown in Figure 3.  

The block is admissible when the following geometric condition is true: 

2 2 2 2

1 2 3 4min ,R Cd d a d d d d    (16) 

where dR, dC are the diagonals of the boxes ΩR and ΩC, respectively, di (i=1,2,3,4) are the distances of 

the corresponding corners of the two boxes and a  is a positive parameter. In the present work a  has 

been chosen to be 1.2.  

 

 

 

 

 



 

 
Figure3: Boxes ΩR and ΩC which enclose the elements belonging to the clusters CR and CC, 

respectively, used in the admissibility criterion (Eq. 15)  

 

 

Step 3: The admissible blocks of the tree are approximated by low rank matrices with respect to a 

prescribed accuracy , by using the adaptive cross approximation algorithm, Let’s consider an 

admissible block sub-matrix M  of matrices H  or G , with dimensions N L  and a full rank 

min ,R N L . The block M  can be represented as: 

( ) ( )K K
M M R             (17) 

where ( )K
M  is a K-rank approximation of M , with k being less equal than r and ( )K

R  is the residual of 

the approximation. ( )K
M can be written as:  
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where 
i

a  and 
i

b are vectors, of dimensions N and L, respectively, found such that the following relation 

holds: 
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where 
F

 denotes the Frobenius norm. Matrices A  and B , of dimensions N K and L K , 

respectively are formed by the vectors i
a  and i

b  as follows:  

1 2 3

1 2 3

...

...

N K

L K

A a a a

B b b b
           (20) 

The memory requirements and matrix multiplication CPU cost of a low rank block areO K N L , 

while for the corresponding full rank representation are ( )O N L . It is obvious that the low rank 

approximation is efficient when the condition ( )K N L N Lholds.  

The best low rank approximation with respect to the Frobenius norm, for a given accuracy , can be 

found by means of the SVD ( Bebendorf, (2000) ). According to SVD, ( )K
M  is written as:  

( ) ( )K K T
M U S V            (21) 

where ( ), ,K
U S V  are the matrices provided by SVD. ( )K

S  is a diagonal matrix of dimensions N L , 

represented as: 
( )

1 2diag , ,..., ,0,...,0K

KS , where 1,...,i i K  are the singular values arranged 

in a descending order. The rank K is given by the following condition: 

2 2

1 1

min :
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l l

l k l
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The singular values i , with 1,...,i K R , are neglected.  

Although the best low rank approximation (the minimal rank K) can be achieved using SVD, its cubic 

CPU cost, 
3( )O R , is prohibitive for using it in real world applications. Thus, instead of the SVD, the 

Adaptive Cross Approximation (ACA), which is a special low rank approximation technique, is used. 



The main idea of ACA is to construct a representation of ( )K
M (Eq. 18) by suitably choosing a small 

subset of the rows and columns of a matrix M . Based on this idea two algorithms have been 

developed; ACA with full pivoting which is an 
2( )O K N L  algorithm and requires as starting point 

the calculation of the entire matrix M , and the partially pivoted ACA, which is an 
2O K N L  

algorithm and requires the calculation of only a small part of M . As it obvious, the partially pivoted 

ACA is faster and consumes less memory than the fully pivoted one, but the approximation accuracy ε 

is not is not guaranteed because its stopping criterion is heuristic since the 
F

M  in Eq. (19) cannot be 

calculated exactly. In the present work the above mentioned drawback is cancelled applying extra 

convergence checks according to the methodology introduced in (Bebendorf (2008)).  

In the algorithms 1 and 2 of the appendix, the fully and partially pivoted ACA algorithms, as they are 

implemented in the present work, are described in detail. 

Step 4: Although ACA provides an almost optimal approximant, it is possible to optimize the 

compression of the admissible blocks and further reduce the storage memory. To this end, a number of 

techniques have been proposed for the recompression of the matrix sub-blocks (Grasedyck (2005)). In 

the present work the recompression is accomplished by means of the SVD. Each block is recompressed 

immediately after it has been approximated with ACA. In this way the storage is reduced in the process 

of assembling the hierarchical matrix.  

The first step of the recompression algorithm for admissible blocks, as it has been implemented in the 

present work, is the following:  

1) Compute for the matrices N KA  and L KB  the QR decompositions 
A A

N K N K K KA Q R  and 

B B

L K L K K KB Q R , respectively 



2) Compute the SVD of the matrix 
T

A B T
R R U S V where , ,U S V  are the obtained matrices of 

size K K . 

3) Find the optimum rank SVDk  ( k ) such that condition (22) is fulfilled for the prescribed accuracy 

. 

4) Find the final, optimum compressed, matrices N KA  and N KB , as follows: 

opt opt opt opt opt opt

A

N K N K K K K KA Q U S   

opt opt opt opt

B

L K L K K KB Q V .  

The non-admissible leaf blocks can also be compressed by using the standard SVD procedure. 

Applying SVD to a block M , its approximant ( )K
M  can be factorized in terms of Eq. (17) as follows: 

( )K T
M A B             (22) 

where 

( )K
A U S

B V
            (23) 

However, for non-admissible leaf blocks positioned exactly on the diagonal of the hierarchical matrices 

H  or G  the factorization is not efficient. These blocks are full rank blocks and the dimensions of A  

and B , provided by SVD, are of dimensions N R and L R , respectively, which implies that storing 

the full matrix M  of dimensions N L , consumes less memory.  

 

3. Numerical results 

In order to demonstrate the efficiency of the proposed hierarchical ACA/BEM formulations, the 2D 

elastostatic bending problem, described in section 2, is solved using both ACA/BEM and conventional 



BEM. Here, the solution of the system (11) is accomplished through the GMRES iterative solver. More 

precisely, the matrix A  is never formed explicitly, saving significant amount of memory, which 

corresponds to the zero values that would appear in A  due to the fact that the fiber regions are 

uncoupled between each other and are only interfaced with the matrix region. Instead, the GMRES 

multiplications are performed straight on Equations (9) and (10). A block left diagonal preconditioner 

is used to accelerate the convergence. The dimensions of each block in the preconditioner are chosen 

to be approximately equal to the number of nodes that each fiber is discretized into. Each block’s 

inversion is performed using the LU decomposition algorithm. The four ACA techniques described in 

the previous section, namely the fully and partially pivoted ACA with and without recompression, are 

used in the ACA/BEM that solves the aforementioned problem. The cardinality of the cluster tree Lt 

and the compression matrix accuracy , appeared in (19) and (22) and used in algorithms 1÷3 of the 

appendix, are chosen Lt=32 and 
510 , respectively. The GMRES accuracy for solving the algebraic 

system of equations (11) is chosen 610GMRES
, noting that the Iterative Solvers Package (ITSOL) 

free source routines were used to this end. For the computation of SVD and QR decompositions the 

free source CLAPACK routines were used.  

In table 1, the maximum deflections of the composite plate with fibers periodically arranged in a square 

pattern are listed for various DOFs N and number of fibers Nf. The results were calculated using the 

above mentioned ACA/BEM formulations and the conventional BEM. The problem parameters, as 

defined in section 2, are the following: L = 9m, D = 3m, EM = 66GPa, vM = 0.31, EF = 360GPa and vF = 

0.25, uf = 0.35 and P = 30MN/m.  

Table 1: Accuracy in maximum deflection calculation obtained by the partially and fully ACA with 

and without recompression formulations and the conventional BEM  

Num. 

of 

Degrees 

of 

Conventional 

BEM 

Partially pivoted 

ACA without 

Partially pivoted 

ACA with 

Fully pivoted 

ACA without 

Fully pivoted 

ACA with 



fibers Freedom recompression recompression recompression recompression 

12 4048 0.0323697 0.0323697 0.0323700 0.0323698 0.0323701 

48 8904 0.0305282 0.0305282 0.0305285 0.0305279 0.0305282 

108 19112 0.0301607 0.0301607 0.0301617 0.0301600 0.0301608 

243 41623 0.0300014 0.0300014 0.0300024 0.0300244 0.0300044 

507 102104 0.0299572 0.0299572 0.0299576 0.0299575 0.0299580 

1083 214896  0.0299250 0.0299227 0.0299259 0.0299234 

2352 461840  0.0299784 0.0299784   

3072 701800  0.0299448 0.0299446   

6075 1.183e6   0.0299567   

 

Observing the results depicted in Table 1, one can say that the first general remark is that for a 

predefined compression matrix accuracy 
510  we obtain results with an error being less than to 

410  

in the maximum deflection of the composite plate. Another remark is that the partially pivoted ACA 

without recompression is the most accurate, while the partially pivoted ACA with recompression is the 

most efficient.   

In Figs 4(a) and 4(b) the normalized total CPU time and memory requirements as function of DOFs N 

are depicted, respectively. In the total CPU time, both the time required for the evaluation of the 

matrices H , G  and the system solution time have been considered. The total CPU time is normalized 

by the corresponding time required for the solution of the problem for 100000 DOFs by means of the 

conventional BEM. Figs 4(a) and 4(b) reveal the well known statement that the total CPU time and the 

memory demand using conventional BEM is of order O(N
2
). Among the four ACA formulations the 

partially pivoted ACA with recompression is the most efficient. The CPU time and memory 

requirements for solving a 2D elastic problem with 10
5
 DOFs using conventional BEM are about the 

same with the corresponding ones needed for the same problem with 10
6
 DOFs when the partially 

pivoted ACA is utilized, i.e., an order of magnitude reduction is achieved.   
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Figure4: Total CPU time (a) and the memory demand (b), using conventional BEM and fully and 

partially pivoted ACA with and without recompression formulations 

 

In the sequel, the displacement fields and the corresponding stresses are evaluated for a composite plate 

with different number of elastic fibers. Figs 8 and 9 depict the contours of displacement ux and normal 

stress σy, respectively, for the plates with periodically arranged and randomly distributed fibers with 

Nf=48 and Vf =0.35. In the same figures, the corresponding displacements and stresses   for a composite 

plate homogenized according to Christensen and Lo (1979) self-consistent homogenization model are 

also provided. Similarly, in Figs 10 and 11 the corresponding contours for Nf=1000 and Vf =0.35, are 

depicted. As it is apparent from all contours, the Christensen model becomes accurate only for large 

number fibers and when they are randomly distributed.  

 

 



 
                                                    (a)                              (b)                                 (c) 

Figure 8: Contours of the displacement magnitude, for Nf=48 and uf =0.35; (a) homogenized plate (b) 

periodically arranged fibers and (c) randomly distributed fibers. 

 

 
                                                    (a)                              (b)                                 (c) 

Figure 9: Contours of normal bending stress, for Nf=48 and uf =0.35; (a) homogenized plate (b) 

periodically arranged fibers and (c) randomly distributed fibers. 

 

 

 

 

 



 
                                                    (a)                              (b)                                 (c) 

Figure 10: Contours of the displacement magnitude, for Nf=1083 and uf =0.35; (a) homogenized plate 

(b) periodically arranged fibers and (c) randomly distributed fibers. 

 

 

 
                                                   (a)                              (b)                                 (c) 

Figure 11: Contours of normal bending stress, for Nf=1083 and uf =0.35; (a) homogenized plate (b) 

periodically arranged fibers and (c) randomly distributed fibers. 

 

 

 

 



 

4. Conclusions 

An advanced Boundary Element method (BEM) accelerated via Adaptive Cross Approximation (ACA) 

and Hierarchical Matrices (HM) techniques for the solution of large-scale elastostatic problems with 

multi-connected domains has been proposed. Fully and partially pivoted ACA techniques with and 

without recompression have been testing with the most efficient being the partially pivoted ACA with 

recompression. The solution of the final linear system of equations has been accelerated via an iterative 

GMRES solver and the total gain in storage memory and solution time renders the proposed 

ACA/BEM a significant candidate for solving realistic problems. The largest problem solved in the 

framework of the present work corresponds to 1.2 million degrees of freedom utilizing a desktop PC 

with 64 GB RAM. The proposed methodology has been demonstrated with the solution of large scale, 

plane strain elastic problems dealing with the bending of unidirectional fiber composite plates with 

large numbers of periodically or randomly distributed cylindrical elastic fibers embedded in a matrix 

medium. The obtained results have been compared to corresponding ones taken for a plate 

homogenized according to Christensen and Lo (1979) self-consistent homogenization model. An 

interesting conclusion revealed by the solution of the aforementioned problems is that Christensen’s 

model becomes accurate only for large number fibers and when they are randomly distributed. 
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Appendix 

Algorithm 1: Fully pivoted ACA 

Let’s consider a matrix block M  of dimensions N L  with N L .  

1) Calculate the entire matrix M . 

2) Set 1K , 
1

R M  and calculate the norm 
1

F
R . 

3) Find the pivot element ,K Ki j  of the matrix 
KR which corresponds to the maximum absolute 

value Kp , i.e. max 1,.., and 1,...,
K

K ijp R i N j L .  

4) Calculate the vectors 
K

a  and 
K

b , appeared in (17), by storing the column , Ki j  and the row 

,Ki j  containing the pivot element, respectively, as follows:    

,

, and      =RK

K

K

i jK K K

i j i j

K

R
a b

p
. 

5) Find the new residual:  

1 TK K K K
R R α b  and calculate the norm 

1K

F
R . 

6) Check the stopping criterion: 

1 1K

F F
R R . 

7) If the stopping criterion does not hold set 1K K  and repeat the algorithm returning to the step 

3. 

8) If the stopping criterion is satisfied, the matrices A  and B  are formed, via Eqs (19), using all the 

above calculated vectors 
K

a  and 
K

b . 



 

Algorithm 2: Partially Pivoted ACA 

Let’s consider a matrix block M  of dimensions N L  with N L .  

1) Set 1K  and form a list Z containing the indices of the block rows, i.e., 1 2{ , ,...., }Ni i i , noting 

that the block, as already mentioned, is of dimensions N L . The indices Ki  are sorted in an 

ascending order. In the first two positions are placed the indices (one for each DOF) corresponding 

to the node of the CR cluster which is closer to the center of the ΩC box and so on. This sorting 

ensures, taking into to account the behavior of the kernels (3) and (4) with respect to the distance r, 

that the maximum absolute value of the block is located at rows 1i  or 2i . 

2) Subtract the index Ki  form the list Z, i.e. { }KZ i .  

3) Calculate the vector 
K

b , appeared in (17), by storing the row ,Ki j  as follows: , =
K

K K

j i jb M . 

4) Compute the new vector 
K

b  as follows: 
1

1

=  
K

K
K K m m

i

m

ab b b , noting for K=1 the summation is 

trivial.  

5) If K epsb  and  return and repeat the algorithm form Step 2, else stop the algorithm. In the 

present work 
1410eps . 

6) Find the index Kj corresponding to the maximum absolute value Kp , i.e., max K

Kp b . 

7) Normalize 
k

b with Kp , i.e., /K K

Kpb b . 

8) Compute the vector 
K

a  as follows:  , K

K

i i ja M . 

9) Compute new vector 
K

a  as follows: 
1

1

=  
K

K
K K m m

j

m

ba a a , noting for K=1 the summation is trivial. 



10) Compute the Frobenious norm of the approximant matrix K
M by the following recursive formula: 

2 2 1 2 2
1

1

2
K

T TK K K i K i K K

F FF F
i

M M a a b b a b , noting for K=1 the 

summation is trivial and 
0

0
F

M . 

11) Check the stopping criterion: 

K K K

F F F
a b M . 

12) If the stopping criterion is not satisfied and  set 1K K return and repeat the algorithm 

form Step 2.  

13) If the stopping criterion is satisfied, the matrices A  and B  are formed, via Eqs (19), using all the 

above calculated vectors 
K

a  and 
K

b . 

Remarks: (i) In the case of N L  the above described partially pivoted ACA algorithm is modified 

by considering that the list Z contains the indices of the block columns  i.e., 1 2{ , ,...., }Nj j j  and the 

followed algorithm is modified similarly. (ii) As it is already mentioned, the stopping criterion in the 

step 11 is heuristic, which implies that there are cases where although the algorithm terminates the 

calculated vectors 
K

a  and 
K

b  do not provide an approximant 
K

M  with the given accuracy . In 

order to overcome this drawback extra convergence checks according to the methodology introduced in 

(Bebendorf (2008)) are applied.  
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