This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund.

The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.

Primary health care planning using DEA and location analysis

Panagiotis Mitropoulos, Ioannis Mitropoulos,

Department of Business Administration, TEI of Western Greece

Ioannis Giannikos

Department of Business Administration, University of Patras,

14th Special Conference of the Hellenic Operational Research Society 11th Meeting of Multicriteria Decision Analysis

Presentation Outline

- Background information
- Issues to consider
 - o Equity
 - o Quality of care
 - Efficiency
- Combined DEA-LA model
- Case study: Health Centres in the Peloponnese
- Conclusions

Background information

- Extensive reforms in the organization and delivery of health services
- Major reform in Greece in the 1980's
- Objective: increase equity
- Result: establishment of Health Centres (HCs)

Background information/2

Characteristics of HCs

- First contact point with NHS
- Actual performance has fallen short of expectations
- Lack of managerial and financial autonomy
- Large differences across regions
- Demographic changes
- Need to reform
 - Assign to HCs financial and administrative responsibilities
 - Introduce a fair system for resource allocation

Issues to Consider

- Option demand: a HC covers all of the population within its catchment area
- Performance of HCs is affected by their location
- The effect of location is alleviated by the range of services
- Objectives of the paper:
 - To evaluate the effectiveness of past location decisions
 - To identify the required services in HCs located within the region
 - To establish which HCs should be upgraded, which ones should provide basic vital services and which ones should close

Overview of the planning process

DEA Inputs and Outputs:

Inputs	Outputs
I ₁ : Number of doctors	O ₁ : Medical exams
I ₂ : Number of nurses	O ₂ : Laboratory tests
I ₃ : Treatment population (non	O ₃ : Transfers
discretionary)	

The DEA model – Envelopment, input oriented

- Indices:
 - h: discretionary inputs
 - f: non discretionary inputs
 - r: outputs
 - k: HC under evaluation

 $\begin{array}{ll} \min \quad \theta \\ s.t. \quad \sum_{j} \lambda_{j} x_{hj} \leq \theta x_{hk} & for \ all \ h \\ & \sum_{j} \lambda_{j} x_{fj} \leq x_{fk} & for \ all \ f \\ & \sum_{j} \lambda_{j} y_{rj} \geq y_{rk} & for \ all \ r \\ & \lambda_{j} \geq 0 & for \ all \ j \\ & \theta \ free \end{array}$

Combined DEA-LA model

Notation:

- I: set of population centres
- J₁: set of HCs locations
- J₂: set of hospital locations
- $J=J_1\cup J_2$
- d_{ij}: distance between i and j
- c_{min}: minimum HC capacity
- d_{max}: maximum distance
- $f_{ij}=1$, if $d_{ij} < d_{max}$
- f_{ij}=0, otherwise

Combined DEA-LA model/2

min
$$\sum_{i \in I} \sum_{j \in J} w_i d_{ij} x_{ij} + M \cdot \sum_{k \in J_1} D_k^-$$
max
$$\frac{\sum_{k \in J_1} efficiency_k \cdot y_k}{\sum_{k \in J_1} y_k}$$
Demand is satisfiedAssignment to HCsAssignment to hospitalsMinimum capacity constraintClosest assignment constraints

s.t.

$$D_k^- \ge 0, \quad k \in J_1 \tag{7}$$

 $x_{ij} \in \{0,1\}, \quad i \in I, \, j \in J \qquad y_k \in \{0,1\}, \quad k \in J_1$

(1)

(2)

(3)

(4)

(5)

(6)

The case study area

Current situation

- 13 hospitals
- 32 primary health centers
- 1340 population centers
- 3 options for the provision of HCs services

DEA results

No	НС	Efficiency	No	HC	Efficiency	
1	Xylokastro	0.61	17	Gargaliani	0.99	
2	Ag. Nicolaos	0.26	18	Guthio	1	
3	Meligala	0.27	19	Filiatra	0.61	
4	Messini	0.26	20	Gkoura	0.18	
5	Pilos	0.27	21	Nemea	0.24	
6	Kiato	1	22	Neapoli	1	
7	Kranidi	0.90	23	Akrata	0.32	
8	Loutraki	1	24	Aandrichena	0.32	
9	Ligourio	0.31	25	Olimbia	0.10	
10	Areopoli	1	26	Varda	0.83	
11	Astros	0.79	27	Gastouni	0.34	
12	Vlahioti	0.50	28	Erimanthia	0.49	
13	Dimitsana	0.65	29	Kato Achaia	0.37	
14	Leonidio	0.86	30	Kleitoria	1	
15	Megalopoli	0.82	31	Chalandritsa	0.78	
16	Tropaia	1	32	Simopoulo	0.68	

Pareto-efficient location–allocation configurations

Solution No	Total No of HCs	Accessibility '000 man.km	Total underachievement	Consolidation mean efficiency
0*	32	8,191	21,940	56,4
1	19	10,607	5,258	60,8
2	18	11,000	5,258	62,2
3	19	10,905	5,258	63,2
4	19	10,781	5,643	64,2
5	20	10,685	5,644	65,1
6	19	10,794	6,106	66,2
7	19	10,876	6,106	67,3
8	20	10,816	7,955	68,5
9	19	10,925	8,417	69,8
10	20	10,830	8,417	70,4

* Current situation

Pareto-efficient location-allocation configurations/2

Remarks:

- o evident underutilization of resources
- o optimal number of HCs ranges from 18 to 20

Pareto-efficient location–allocation configurations/3

		initial	HCs Capacities in optimal solutions									
no		capacit										
·	HC	У	1	2	3	4	5	6	7	8	9	10
1	Xylokastro	16886	16981	16981	16981	16981	16672	16981	×	17587	17343	17409
2	Ag. Nicolaos	-4192	×	×	×	×	×	×	×	×	×	×
3	Meligala	13821	×	×	×	×	×	×	×	×	×	×
4	Messini	24153	26420	26420	26420	26420	26412	26181	26181	26420	26175	26175
5	Pilos	-943	10302	10302	10302	10302	-943	-943	10302	-943	-943	-943
6	Kiato	34001	34001	34001	34001	34001	34245	34001	37767	34001	34245	34245
7	Kranidi	15875	15875	15875	15875	15875	15875	15875	15875	15875	15875	15875
8	Loutraki	28783	28783	28783	28783	28783	28783	28783	28783	28783	28783	28783
9	Ligourio	-600	-600	-600	-600	-600	-600	-600	-600	-600	-600	-600
10	Areopoli	-5289	-4143	-4143	-4143	-4914	-4914	-4914	-4914	-4914	-4914	-4914
11	Astros	-1372	-1372	-1372	-1372	-1372	-1372	-1372	-1372	-1372	-1372	-1372
12	Vlahioti	12782	×	×	×	×	×	×	×	×	×	×
13	Dimitsana	-5855	×	×	×	×	×	×	×	×	×	×
14	Leonidio	-819	-765	-765	-765	-765	-765	-765	-765	-765	-765	-765
15	Megalopoli	12108	×	×	12120	×	12120	×	12120	12120	×	12213
16	Tropaia	-2905	-1236	-1198	-1199	-1236	-1237	-1207	-1245	-1602	-1593	8360
17	Gargaliani	17756	×	×	×	×	×	21545	21545	×	21578	21578
18	Guthio	11379	×	×	×	12362	12362	12362	12362	12362	12362	12362
19	Filiatra	18163	20625	20625	20625	20625	20633	×	×	20625	×	×
20	Gkoura	-5918	×	×	×	×	×	×	×	×	×	×
21	Nemea	12920	13153	13153	13153	13153	13219	13153	13219	13185	13185	13119
22	Neapoli	-442	-442	-442	-442	-442	-442	-442	-442	-442	-442	-442
23	Akrata	-266	10086	10086	10086	10086	10093	10086	10208	×	×	×
24	Andrichena	-3655	-1957	-1995	-1995	-1957	-1957	-1969	-1931	-1987	-1977	-1931
25	Olimbia	24333	×	×	×	×	×	×	×	×	×	×
26	Varda	17421	18945	19661	19661	19661	19763	19661	19661	19661	19763	19763
27	Gastouni	31248	31248	×	×	×	×	×	×	×	×	×
28	Erimanthia	-3839	×	×	×	×	×	×	×	×	×	×
29	Kato Achaia	23653	×	×	×	×	×	×	×	×	×	×
30	Kleitoria	-4723	×	×	×	×	×	×	-4227	-4227	-4227	-4227
31	Chalandritsa	-3062	10490	10490	10490	10490	10490	10490	10490	10490	10490	10490
32	Simopoulo	10048	×	×	×	×	×	×	×	×	×	×
	Total	32	19	18	19	19	20	19	19	20	19	

"×": shaded cell	HC closure, s : upgraded services,
"_":	underachievement from treatment population of 10,000
(Bold):	HCs with different configuration

Ste lation

Some remarks

- Increase of Mean Efficiency by 3d objective
- Steady operational patterns
- Hospitals offer stability
- Importance of constraint on treatment population

Re-assessment of efficiencies

- DEA inputs and outputs are replaced by expected ones
 - Treatment population is estimated by the solution of the DEA-LA model
 - Doctors and nurses are determined by the level of services offered
 - Outputs are estimated according to the outputs of neighboring HCs that are closed
- New average DEA efficiency increases by 18%
- These results are used as future targets

Conclusions

- Combination of DEA with resource allocation models
- Model can be extended to include additional objectives
- More complicated restrictions may be considered
- Interesting to consider a dynamic version of the problem
- Create scenarios concerning changes in population over time, migration, etc