Int J Adv Manuf Technol (2015) 79:1293-1302
DOI 10.1007/500170-015-6923-7

ORIGINAL ARTICLE

Planning the construction process of a robotic arm using a genetic

algorithm

P. T. Zacharia - S. A. Tsirkas - G. Kabouridis -
G. L. Giannopoulos

Received: 10 August 2014 / Accepted: 16 February 2015 /Published online: 3 March 2015

© Springer-Verlag London 2015

Abstract This paper presents an application of the simple
assembly line balancing problem of type 2 (SALBP-2). A
considerable number of robot components comprising a ro-
botic arm are elaborated through four machine tools. Real data
values for the processing times are gathered and precedence
constraints are considered for finding the optimum cycle time
needed for finishing the robotic arm. A genetic algorithm
(GA) is used as the optimization tool for the solution of the
SALBP-2, which is an NP-hard problem. The experimental
results demonstrate the effectiveness and efficiency of the
proposed GA in determining the optimum sequence of the
tasks assigned to workstations and providing the optimum
cycle time.

Keywords Scheduling - Production - Process planning -
Machine tools - Metal parts

1 Introduction

An assembly line is a familiar example from the realm of
manufacturing. Flow lines are found in all types of industries,
wherever products may be imagined to move along from sta-
tion to station. Assembly is a process by which subassemblies
and components are put together, yielding the finished prod-
ucts. The assembled product takes shape gradually, starting
with one part, the remaining parts being attached at the various
stations the product visits [1].

P. T. Zacharia - S. A. Tsirkas - G. Kabouridis *

G. 1. Giannopoulos (<)

Department of Mechanical Engineering, Technological Educational
Institute of Western Greece, Megalou Alexandrou 1, 263

34 Patras, Greece

e-mail: ggiannopoulos@teiwest.gr

Assembly lines are a traditional widely used type of produc-
tion systems for mass and large-scale production. They consist of
a number of workstations arranged along an automated material
handling system such as a conveyor belt. Work pieces are moved
along the line from station to station, while each station performs
anumber of repeated operations (tasks) necessary to manufacture
a desired final product. These tasks can be performed by machin-
ery, robots, and/or human operators. The order of processing the
tasks is restricted by technological and organizational conditions,
e.g., mounting a radio device requires having installed a fixture
and cables before. These partial orderings of tasks are collected
within a precedence graph. Once the part enters a station, a task is
then performed on the part and the part is fed to the next opera-
tion. Each sub-product unit remains at each station for a fixed
work rate called the cycle time of the line.

The rapid qualitative and quantitative changes in market
demands cause manufacturers to seek the best possible
methods for managing their assembly lines so as to produce
more sophisticated and more competitive products. To re-
spond to these diverse market needs, modern assembly lines
must be highly automated and easily reconfigurable [2]. The
simple assembly line balancing problem (SALBP) is a deci-
sion problem arising when an assembly line has to be config-
ured or redesigned. The problem consists of determining the
optimal partitioning (balancing) of the assembly work among
the workstations while optimizing one or more objectives
without violating the restrictions imposed on the line. Rashid
et al. [3] have recently provided an interesting review
concerning research on assembly sequence planning and
SALBP that use soft computing approaches. Fathi and
Ghobakhloo [4] have efficiently attempted to supplement the
previous review. Simultaneously, they have provided up-to-
date information regarding the research on SALBP and have
proposed a guide to future relevant research.

According to the definition of simple assembly line balance
(SALB) problems by Scholl and Becker [5], SALBP-1,

@ Springer

1294

Int J Adv Manuf Technol (2015) 79:1293-1302

SALBP-2, and SALBP-E are the three common subcategories
of SALBP. These kinds of problems are of combinatorial na-
ture and belong to the NP-hard class of combinatorial optimi-
zation problems [6]. Therefore, exact algorithms can hardly be
designed to solve large sizes of any variant of SALBP and
consequently, the right way to proceed is through the use of
heuristics techniques.

SALBP type 1 [7-19] intends to assign tasks to worksta-
tions such that the number of stations is minimized for a pre-
specified cycle time which generally happens when the orga-
nization desires to design new assembly lines. SALBP type 2
[20-26] aims to minimize the cycle time, or equivalent-
ly, to maximize the production rate for a specific num-
ber of stations. This problem is appropriate for the
available systems which intend to improve their line
efficiency. Finally, SALBP type E [27, 28] targets at
maximizing the line efficiency thereby simultaneously
minimizing the number of stations and cycle time con-
sidering their interrelationship. The solution of SALBP
problems may be achieved by utilizing approaches such
as GA [7, 20, 21, 28], ant colony optimization [10, 13,
26], particle swarm optimization [14, 15, 18], Petri net
[9, 11, 22], tabu search [8], bacterial foraging optimiza-
tion [19], or other heuristic algorithms [12, 16, 17,
23-25, 27].

This paper introduces a genetic algorithm (GA) [29, 30] for
solving the SALBP-2 for the assembly line of a robot. The
central focus of this work lies on the solution of the assembly
line balancing problem by using an evolutionary algorithm for
the test case of a robotic arm construction. Thus, the main
body of this paper concentrates on the analysis of the assem-
bly line balancing problem using a GA, whereas the
construction of the robotic arm and the resulting pro-
cessing times are used to demonstrate the applicability
of the proposed approach. To the best of our knowl-
edge, no other published work in the literature studies
the SALBP-2 for a robotic system. Hence, unfortunate-
ly, there is no existing solution algorithm to make com-
parisons with our method.

The rest of the paper is organized as follows: Section 2
considers selected terms and aspects of assembly line
balancing of type 2. Section 3 presents the assembly problem
tackled in practice for the manufacture of the robot compo-
nents. Computational results concerning the performance of
the GA, while conclusions and directions for future work are
pointed out and discussed in Section 5. To the authors’ best
knowledge, it is the first time that a simple assembly line
balancing problem is considered for the manufacturing of a
robotic arm via the use of cutting and forming machine tools.
For this reason, appropriate experimental data are presented
while a suitable genetic algorithm is utilized. The outcome of
the proposed paper may have industrial application in the
effort to effectively plan the production line of a robotic arm

@ Springer

or other similar manufacturing lines associated with metal
cutting and forming.

2 Background of assembly line balancing

Each assembly line can be modeled as a sequence of m stations.
Manufacturing a single product on the line requires the
partitioning of the total work into a set V'={1,...,n} of n elemen-
tary operations called tasks. Each task j is performed on exactly
one station and requires a processing time #. At each station, a
specific set of tasks, called station load S.(z=1,...,m) is repeat-
edly executed. The station time ¢S, =Y s t;(z = 1,...,m)
must not exceed a given cycle time ¢ available per work cycle.
The tasks are partially ordered by precedence relations defining a
directed acyclic graph (DAG) G=(V,E); with V being the set of
the nodes denoting the tasks in G and E the set of the edges
representing the precedence constraints among these tasks.
Besides precedence constraints, the precedence graph also shows
independencies of tasks.
The classical problem contains the following main
characteristics:
* Mass-production of one homogeneous product
* Given production process
* Paced line with fixed cycle time ¢
* Deterministic operation times #;
» The processing sequence of tasks is subject to precedence
restrictions
* No assignment restrictions besides the precedence
constraints
» Serial line layout with m one-sided stations
» All stations are equally equipped with respect to machines
and workers
» Every task must be performed only once in each cycle
» Setups are assumed to be negligible

The SALBP-2 has the objective of minimizing the cycle time
c of the assembly line given the number of workstations 7.
The notations used in this article are listed below:

n Number of assembly tasks
m Number of stations in the line
Index of the assembly task j (=1, ..., n)
Processing time for task j
Cycle time of the line
. Load of station z (z=1, ..., m); i.e., the set of the tasks
assigned to station z
tS. Time required to complete all the tasks assigned to
station z
G A precedence graph for the assembly tasks (denoting the
precedence constraints between the assembly tasks)
V- The set of vertices in G
E The set of edges in G

Int J Adv Manuf Technol (2015) 79:1293-1302

1295

3 Problem statement

Most robots are designed for repetitive manufacturing work.
They handle tasks, which are demanding, hazardous, or tire-
some, in a more efficient way than human beings because they
are significantly precise. The most common manufacturing
robot is the robotic arm. An industrial robot with six joints
closely resembles a human arm since it has the equivalent of a
shoulder, an elbow, and a wrist. In the present study, the con-
struction process of a metallic robotic arm has been chosen as
a test case. This kind of machine has been preferred among
others since its production presents complexity, various chal-
lenges, and technological importance.

The robotic arm under consideration is generally made from
3-mm thick aluminum sheet, is approximately 600 mm in length
and has been designed to meet specific needs of mobility, i.e., six
principal degrees of freedom. Furthermore, the developed robot
uses a controller to control the operation of arm action and move-
ment. The computer controls the robot by rotating individual step
motors connected to each individual joint, allowing sufficient
link lengths. Unlike ordinary motors, step motors move in exact.
This allows the computer to move the arm very precisely, repeat-
ing exactly the same movement over and over again. A simple,
scalable control system allows coordinated Cartesian control, and
offers expandability for future research. Figure 1 illustrates the
prototype that has been constructed for the needs of the present
study.

As depicted, the developed robotic arm consists of a waist,
a shoulder, an elbow, a wrist, and a gripper. All these robotic
parts are coupled with appropriate joints. The metal frame of
the robotic arm is composed of several aluminum components
which are illustrated and numbered in Fig. 2.

The aluminum structure of the robotic arm takes shape in a
simple assembly line which has four workstations, i.e., a mill-
ing, a drilling, a lathe, and a bending machine which are
depicted in Fig. 3.

Elbow rotation Wrist bend

Wrist rotation

Gripper

Fig. 1 Manufactured robotic arm

4 The proposed optimization approach

GAs are probabilistic search methods that employ search tech-
niques inspired by Darwin’s evolutionary theory which is based
on the principles and mechanisms of natural selection and the
survival of the fittest. GAs employ a random yet directed, search
for finding the globally optimal solution. They have the advan-
tage over the gradient descent techniques that they do not require
the derivative of the objective function and the search is not
biased toward the locally optimal solution. In contrast to random
sampling algorithms, GAs have the ability to direct the search
toward relatively promising regions in the problem’s search
space. In addition, they have been empirically proven very effec-
tive in solving a large number of complex combinatorial optimi-
zation problems.

The architecture of any GA consists of the following seven
basic components:

a. A representation mechanism, i.e., a way of encoding the
phenotypes to genotypes.

b. A decoding mechanism, i.e., a way of mapping the pheno-
types to actual solutions of the optimization problem under
consideration.

c. An evaluation mechanism, i.e., a way of computing the
cost-function for each genotype.

A way to generate the initial population of the genotypes.

e. Generate new genotypes by applying operators on the
entire population.

f. Control parameters
A termination condition

The sketch of the proposed GA in pseudo-code is presented
in Table 1.

The main steps of the GA are discussed in detail in the
following paragraphs:

The representation mechanism: In this work, a real-
valued GA was adopted for use, i.e., genotypes are rep-
resented by floating-point vectors. Therefore, since actual
assembly line balancing problem (ALBP) solutions are
represented by strings of integers [6], an appropriate map-
ping is needed from the genotypic state-level (the real-
valued vectors) to the phenotypic level (the actual ALB
solutions). To achieve this mapping, a simple yet effec-
tive topological ordering scheme has been developed
based on the relative priorities impose by the components
of a genotype. Assuming an n-task ALBP with prece-
dence relations given by a DAG G=(/, E), the developed
encoding scheme consists of generating a topological sort
of G from a specific n-dimensional floating-point vector
1) (genotype). Each vector’s component 1; (i=1, ..., n)
represents the relative priority of task i (ieV). The topo-
logical sort is therefore a ranking of all the tasks

@ Springer

1296 Int J Adv Manuf Technol (2015) 79:1293-1302

Fig. 2 Numbered components of
the robotic aluminum frame

according to their priorities in an appropriate order to
meet the precedence constraints.

In each step, the tasks with no predecessors are iden-
tified and put in set J". Then, the task in /" having the
highest gene’s value in v is selected, removed from V7,
and placed in the next available position of PS. The pro-
cess is repeated until the completion of PS.

The decoding mechanism: Once a specific genotype is
encoded into a phenotype, a way is needed to assign the
tasks in the generated task-sequence into the stations. In
this work, a scheme proposed by Kim et al. [31] was
adopted; this scheme was found to be superior to other

@ Springer

:

«—component 13 component 14—

[

component 2 component 3

B N

component 8

component 11

traditional schemes [6] in terms of quality of solutions.
This scheme works as follows:

Step 1: Set ¢ initially equal to the theoretical minimum
cycle time, i.e., cg,=tsum/Mm.

Step 2: Assign as many tasks as possible into the first m-1
workstations. Assign all the remaining tasks to the last work-
station, 1.

Step 3: Calculate the work load W, for each work-
station z (z=1, 2, ..., m), and the potential workload
PW, (z=1, 2, ..., m-1) as follows: W,=the station
time S, (z=1, 2, ..., m). PW,=tS,+ the processing

Int J Adv Manuf Technol (2015) 79:1293-1302

1297

Fig. 3 Machining workstations

Lathe machine

time of the first task assigned to (z+1) station (z=1,
2, ..., m-1).

Step 4: Set cy=max{W,W,,...,W,} and

¢ =min{PW,PWo,...,PW 1}

Step 5: If ¢, >-c then go to Step 2, or else return ¢,

The evaluation mechanism: The evaluation mechanism
uses the objective function of the current problem, which
has to be minimized. This function is transformed to the
fitness function, which is evaluated for all the chromosomes
of the population. The value of the fitness function for one
chromosome is a reflection of how well this chromosome is
adapted to the environment, i.e., the ability of the chromo-
some to survive and be reproduced in the next generation.

In the problem discussed here, the objective function
deals with the cycle time ¢ of the assembly line. The fitness
function is the inverse of the objective function:

1
fitness = — 1
ess : (1)

Since c#0, it is not necessary to take any precaution to
avoid infinite values.

The initial population: Usually, the initial population is
randomly created in order to uniformly distribute

Bending machine

the selected chromosomes (solutions over the search
space).

The GA operators: In the proposed GA, reproduction is
based on the roulette wheel scheme, where the chromo-
somes that will be copied are selected with rates propor-
tional to their fitness. Crossover is a recombination oper-
ator and follows the reproduction. The role of this
operator is to join together parts of several individ-
uals in order to produce new ones for the next
generation. The individuals are randomly selected
according to a predefined probability (crossover
rate). In the proposed GA, the one-point crossover
[32] is applied. Mutation is applied in order to in-
ject new genetic material into the population and
thereby avoid premature convergence to local mini-
ma. The mutation operator is applied changing a
random gene (i.e., a floating number) to another
one lying in the searching space with a small-
predefined probability (mutation rate).

Control parameters: The most important control param-
eters are the following:

Population size: The population size determines the num-
ber of the chromosomes and therefore, how much genetic

@ Springer

1298

Int J Adv Manuf Technol (2015) 79:1293-1302

Table 1 Utilized GA pseudo-code

Genetic algorithm

Input: » tasks; m workstations; processing times t;, precedence relations
G=(V,E), pc, pm, max_gen.
Output: cycle time ¢
begin
Step 1. Initialization:
Generate randomly an initial population (Py)
Set generation counter, k=0
Step 2. Evaluation:
Compute fitness (i) for each ie Py,
Step 3. New population generation

Apply reproduction operator in P, using roulette wheel selection
scheme.

Apply one-point crossover to some individuals selected according
to probability p.

Apply random mutation to some individuals selected according
to probability pp,.

k=k+1;
Step 4. Evaluation:
Compute fitness (i) for each i€ Py
Step 5. Elitist preserving strategy:
Determine the best solution in Py g;

Compare the best solution in P;..; with the best solution in P,
and keep the best one between them as the overall best solution.

Step 6. if gen<max_gen then go to Step 3.
Step 7. Return c;
end;

material is available during the genetic search. It has to be
mentioned that a small population size covers a small area
of the search space, which means that it may not be a
representative sample of the solutions. So, a small popula-
tion size decreases the possibility of finding a global opti-
mum. On the other hand, a large population size signifi-
cantly increases the CPU time. The population size depends
on the nature and the complexity of the current problem. In
this work, the proposed algorithm was tested for various
population sizes. Finally, the selected population size is
equal to 100 for the case of 4 workstations and 30 tasks.
Crossover rate: The crossover rate (p.) determines the
frequency with which the crossover operator is applied
to the chromosomes of the population, so that a new
population is generated. The higher the crossover rate
is, the more individuals are introduced in the new popu-
lation. The crossover rate is usually in the range between
0.6 and 1.0 and in our case, it is selected equal to 0.8 after
a considerable number of trials.

Mutation rate: The mutation rate (p,,) determines
the probability that a gene’s value in a chromosome

@ Springer

would be changed. Mutation introduces new areas
of the unexplored search space. However, the mu-
tation rate should not be too high, because it in-
creases the randomness in the search. The mutation
rate is usually less than 0.4 and it was selected
equal to 0.1 in our case.

Elitism: Elitism is the selection strategy that guarantees
the survival of the best chromosome of the population to
the next generation. This is achieved by comparing the
best chromosome of the current generation with the best
one of the previous generation and preserving the best of
the two chromosomes.

Termination conditions: There is no mathematical proof
of convergence or any guarantee that the genetic
algorithm will find the global optimum. In addition,
it is not clear which is the best way to terminate
the algorithm. In many cases, a maximum number
of iterations (generations) is defined in advance
(max_gen). However, the predetermination of the
maximum number of generations implies that the
duration of the genetic search is fixed, regardless
of the search success. Moreover, it is difficult to
determine beforehand the number of generations
needed to find near-optimum solutions. Thus, an
assessment of the quality level of the genetic algo-
rithm should be made online.

In our approach, the condition to be satisfied so that the
evolution is aborted is the iteration of the same solution for a
predefined number of generations. So, the algorithm termi-
nates by defining in advance the number of iterations
(generations) for which the same chromosome constantly
appears as the optimum one. It should be mentioned that
the best solution appears for several iterations before a for-
tuitous crossover or mutation produces a better solution. For
this reason, the maximum number of iterations should be
large enough; otherwise, a misleading result may arise.

5 Computational study

For the manufacturing of the robotic arm, 14 components
should be machined in four machine tools (milling, lathe,
drilling, and bending machine); 4 parts for component no.
13 and 10 parts for component no. 14. Table 2 summarizes
all the details to the 57 total tasks. The aim is to find the
optimum sequence of tasks assigned to stations so that the
minimum total time for executing all tasks is achieved. The
precedence constraints are presented in Fig. 4.

Considering the total time for each of the 57 tasks given in
Table 2 as well as the aforementioned precedence relations, the

Int J Adv Manuf Technol (2015) 79:1293-1302 1299
Table 2 Detailed table of execution times for each robot component
No. of No. of Type of Execution Component Cutting tool Zero points Total
tasks component task time (s) placement placement time () time (s)
time (s) time (8)
1 1 milling 2937 103 20 45 3105
2 1 drilling 55 2 17 - 74
3 2 milling 624 103 20 45 792
4 2 drilling 34 2 17 - 53
5 3 milling 658 103 20 45 826
6 3 drilling 22 2 17 - 41
7 4 milling 695 103 20 45 863
8 4 drilling 48 2 17 - 67
9 5 milling 355 103 20 45 523
10 5 drilling 26 2 17 - 45
11 6 milling 681 103 20 45 849
12 6 drilling 24 2 17 - 43
13 7 milling 884 103 20 45 1052
14 7 drilling 59 2 17 - 18
15 8 milling 617 103 20 45 785
16 8 drilling 40 2 17 - 59
17 9 milling 638 103 20 45 806
18 9 drilling 36 2 17 - 55
19 10 milling 376 103 20 45 544
20 10 drilling 6 2 17 - 25
21 10 bending 4 37 - - 41
22 11 milling 228 103 20 45 396
23 11 drilling 7 2 17 - 26
24 12 milling 217 103 20 45 385
25 12 drilling 22 2 17 41
26 13 (1st out of 4 items) milling 783 103 20 45 951
27 13 drilling 44 2 17 - 252
28 13 bending 4 37 - - 41
29-37 13 (3 items)
38 14 (1st out of 10 items) lathing 1396 38 135 - 1569
39 14 drilling 46 2 17 - 65
40-57 14 (9 items)

minimum time yielded by the proposed genetic algorithm is
equal to 8209 s. The station load for each workstation is pro-
vided by the GA best solution and concerns the tasks assigned
to each workstation in a specific order and is subject to the
aforementioned constraints. The resulting task sequence for
each workstation corresponding to ¢=8209 is as follows:

e Workstationl: 11-22-48-12-29-5-15-6-50-3-24

» Workstation2: 25-9-10-44-45-52— 38-39-51-16-46—
13-14

e Workstation3: 19-20-21-17-7-8-47-1-2-26-27-28—
35-36-37-49-53

e Workstation4: 42-43-56-57-32-54-55-33-34-30-31-
18 4-40-41-23

In particular, Workstation! starts with task11 and after
finishing, it continues with task 22 and so on until it finishes
with task 24. Similarly, Workstation2 starts with task 25, then
accomplishes task 9 and finishes with task 14. The robotic arm
is manufactured when all tasks assigned to each workstation
have been accomplished. According to the aforementioned
assignment, the station time for each workstation is:

e Workstationl: 8206 s

@ Springer

1300 Int J Adv Manuf Technol (2015) 79:1293-1302

Fig. 4 Precedence constraints

bbbt
Sobboa008

EEEEZZEZ,,,,,,,

» Workstation2: 8208 s which is close to the cycle time.
* Workstation3: 8209 s Figure 5 shows the evolution of the genetic algorithm.
* Workstation4: 8207 s Although it is not clear from Fig. 5, the best cycle time (equal

@ Springer

Int J Adv Manuf Technol (2015) 79:1293-1302

1301

Fig. 5 The evolution of the GA x10*

125 |

2

1

cycle time (sec)

T T T
best cycle time
worst cycle time
average cycle time

to 8209 s) is achieved in the 923rd generation. For sake of
clarity, Fig. 6 zooms in the convergence point.

6 Conclusions

This work deals with the assembly line balancing prob-
lem of type 2 in a real problem of constructing a ro-
botic arm. The robot components are formed using a
number of machine tools and the processing times as
well as the precedence relations are taken into account
for the solution of the problem. The experimental results
show that the genetic algorithm exhibited good perfor-
mance in finding the optimum cycle time for the

200 300 400 500 600 700 800 900 1000
number of generations

accomplishment of the construction of robotic arm.
Considering future research, some perspectives are
discussed below:

a. Applying heuristics in order to minimize the idle time, i.e.,
maximize the line efficiency.

b. Considering the operator skills problem, where various
task processing times are considered for the execution of
a certain task depending on which worker executes the
task.

c. Taking into account that real-world production sys-
tems are often afflicted with uncertainty, variability,
and imprecision, fuzzy processing times could be
applied.

Fig. 6 Zoom in the convergence 8300 T
point :

5 § §

cycle time (sec)

§ §

-

g
S
|
H
H
.

T T T T T T T T
: H ' : ! best cycle time
worst cycle time [
average cycle time

b

10 f----=----

i i i i i i i i

200 300 400 500 600 700 800 900 1000
number of generations

@ Springer

1302

Int J Adv Manuf Technol (2015) 79:1293-1302

d. Applying a U-shaped assembly line layout, where stations
work at two segments of the line facing each other
simultaneously.

Acknowledgments This research has been co-financed by the Europe-

an Union (European Social Fund—ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF)—Research
Funding Program: ARCHIMEDES III Investing in knowledge society
through the European Social Fund. The authors wish to thank pro-
graduate students L.K. Kiafas and L.S. Vasilakis for their help in the
construction of the robotic arm.

References

10.

11.

12.

13.

. Rekiek B, De Lit P, Pellichero F, L’Eglise T, Fouda P, Falkenauer E,

Delchambre A (2001) A multiple objective grouping genetic algo-
rithm for assembly line design. Int J Adv Manuf Technol 12(5-6):
467485

. Nearchou AC (2007) Balancing large assembly lines by a new heu-

ristic based on differential evolution method. Int J Adv Manuf
Technol 34(9-10):1016-1029

. Rashid MFF, Hutabarat W, Tiwari A (2012) A review on assembly

sequence planning and assembly line balancing optimisation using
soft computing approaches. Int J Adv Manuf Technol 59(1—4):335—
349

. Fathi M, Ghobakhloo M (2014) A technical comment on “a review

on assembly sequence planning and assembly line balancing optimi-
sation using soft computing approaches”. Int J Adv Manuf Technol
71(9-12):2033-2042

. Scholl A, Becker C (2006) State-of-the-art exact and heuristic solu-

tion procedures for simple assembly line balancing. Eur J Oper Res
168(3):666—693

. Scholl A (1999) Balancing and sequencing of assembly lines, 2nd

edn. Physica, Heidelberg

. Goncalves JF, Almeida JRD (2002) A hybrid genetic algorithm for

assembly line balancing. J Heuristics 8(6):629—-642

. Lapierre SD, Ruiz A, Soriano P (2006) Balancing assembly lines

with tabu search. Eur J Oper Res 168(3):826-837

. Kilinceci O, Bayhan GM (2006) A Petri net approach for simple

assembly line balancing problems. Int J] Adv Manuf Technol
30(11-12):1165-1173

Zhang ZQ, Cheng WM, Tang LS, Zhong B (2007) Ant algorithm
with summation rules for assembly line balancing problem. In:
International conference on management science and engineering,
ICMSE’07 (14th), 4421875, pp 369-374

Kilineci O, Bayhan GM (2008) A P-invariant-based algorithm for
simple assembly line balancing problem of type-1. Int J Adv Manuf
Technol 37(3-4):400-409

Yeh DH, Kao HH (2009) A new bidirectional heuristic for the assem-
bly line balancing problem. Comput Ind Eng 57(4):1155-1160
Sulaiman MNI, Choo YH, Chong KE (2011) Ant colony optimiza-
tion with look forward ant in solving assembly line balancing prob-
lem. Data Min Optim 5976514:115-121

@ Springer

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

Dou J, Li J, Lv Q (2011) A hybrid particle swarm algorithm for
assembly line balancing problem of type 1. In: International confer-
ence on mechatronics and automation, 5986373, pp 1664—1669
Dou J, Su C, LiJ (2011) A discrete particle swarm optimization
algorithm for assembly line balancing problem of type 1. In: 3rd
international conference on measuring technology and mechatronics
automation, pp 4447

. Fathi M, Jahan A, Ariffin MKA, Ismail N (2011) A new heuristic

method based on CPM in SALBP. J Ind Eng Int 7(13):1-11

Ariffin MKA, Fathi M, Ismail N (2012) A new heuristic method to
solve straight assembly line balancing problem. Pertanika J Sci
Technol 20(2):355-369

Dou J, Li J, Su C (2013) A novel feasible task sequence-oriented
discrete particle swarm algorithm for simple assembly line balancing
problem of type 1. Int J Adv Manuf Technol 69(9—12):2445-2457
Atasagun Y, Kara Y (2014) Bacterial foraging optimization algorithm
for assembly line balancing. Neural Comput Applic 25:237-250
Zhang R, Chen D, Wang Y, Yang Z, Wang X (2007) Study on line
balancing problem based on improved genetic algorithms. In:
International conference on wireless communications, networking
and mobile computing, WiCOM 2007, 4340283, pp 2033-2036

Gu L, Hennequin S, Sava A, Xie X (2007) Assembly line balancing
problems solved by estimation of distribution. In: Proceedings of the
3rd IEEE international conference on automation science and engi-
neering, IEEE CASE 2007, pp 123-127

Kilincci O (2010) A Petri net-based heuristic for simple assembly line
balancing problem of type 2. Int J Adv Manuf Technol 46(1-4):329—
338

Blum C (2011) Iterative beam search for simple assembly line
balancing with a fixed number of work stations. SORT Stat Oper
Res Trans 35(2):145-164

Tang Q, Lu S, Li M, Floudas CA (2011) Novel cellular automata
algorithm for assembly line balancing problem of type-2. In: 6th
international conference on pervasive computing and applications,
6106542, pp 422-428

Avikal S, Mishra PK, Jain R (2012) A model for assembly line
balancing problems. In: Students conference on engineering and sys-
tems, 6199117, pp 1-4

Zheng Q, LiM, Li Y, Tang Q (2013) Station ant colony optimization
for the type 2 assembly line balancing problem. Int J Adv Manuf
Technol 66(9-12):1859-1870

Wei N-C, Chao I-M (2011) A solution procedure for type E simple
assembly line balancing problem. Comput Ind Eng 61(3):824-830
Zacharia PT, Nearchou AC (2013) A meta-heuristic algorithm for the
fuzzy assembly line balancing type-E problem. Comput Oper Res
40(12):3033-3044

Holland JH (1975) Adaption in natural and artificial systems. The
University of Michigan Press, Ann Harbor

Goldberg DE (1989) Genetic algorithms in search, optimization and
machine learning. Addison-Wesley, Reading

Kim YK, Kim YJ, Kim Y (1996) Genetic algorithms for assembly
line balancing with various objectives. Comput Ind Eng 30(3):397—
409

Michalewicz Z (1996) Genetic algorithms + data structures = evolu-
tion program, 3rd edn. Springer, Berlin

	Planning the construction process of a robotic arm using a genetic algorithm
	Abstract
	Introduction
	Background of assembly line balancing
	Problem statement
	The proposed optimization approach
	Computational study
	Conclusions
	References

