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This paper presents an application of the fuzzy assembly line balancing problem of 

type 2 (SALBP-2), which is an NP-hard problem. The optimization tool for the 

solution of the fuzzy SALBP-2 is a Genetic Algorithm (GA). The efficiency of the 

proposed approach is tested on the construction process of a robotic arm. Bearing in 

mind that the data obtained from more realistic situations are imprecise and uncertain, 

the consideration of fuzziness for the solution of SALBP-2 is of great interest. Thus, 

real data values for the processing times are gathered and estimated as within 

uncertainty. Then, fuzzy processing times are used for finding the optimum cycle time 

needed for finishing the construction of the robotic arm. The experimental results 

demonstrate the effectiveness and efficiency of the proposed GA in determining the 

optimum sequence of the tasks assigned to workstations and providing the optimum 

fuzzy cycle time. 
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1. Introduction 

In mass production systems, an important problem is the assembly line problem. An 

assembly line is a manufacturing technique according which parts are added in 

sequence from workstation to workstation until the final assembly is produced.  Each 

station has to complete a set of tasks on parts moving along the line. There are 

numerous studies related with assembly line systems which focus on the 

determination of the set of tasks which have to be assigned to each workstation under 

a given cycle and the constraints of precedence relationships. This kind of problem is 

well known as the simple assembly line balancing problem (SALBP) (Scholl and 

Becker 2006).  

The most famous versions of the abovementioned problem is the SALBP type 

1 (SALBP-1) and the SALBP type 2 (SALBP-2). SALBP-1 (Goncalves and Almeida 

2002; Lapierre, Ruiz, and Soriano 2006; Kilincci and Bayhan 2006; Zhang et al. 

2007; Nearchou 2008; Kilincci and Bayhan 2008; Yeh and Kao 2009; Sulaiman, 

Choo, and Chong 2011; Dou, Li, and Lv 2011; Dou, Su, and Li 2011; Fathi et al. 

2011; Ariffin, Fathi, and Ismail 2012; Dou, Li, and Su 2013; Atasagun and Kara 

2014) is present when the aim is to effectively assign tasks to workstations by 

minimizing the number of stations for a pre-specified cycle time. This problem 

commonly arises when new assembly lines are to be designed by a company. On the 

other hand SALBP-2 (Zhang et al. 2007; Gu et al. 2007; Kilincci 2010; Blum 2011; 

Tang et al. 2011; Avikal, Mishra, and Jain 2012; Zheng et al. 2013) is present when 

the aim is to minimize the cycle time for a specific number of stations. This kind of 

problem usually arises when changes in the production process of a product are to 

take place in the effort to improve the line efficiency. Several methods have been 

proposed for the solution of SALBP problems such  as genetic algorithms (GAs) 

http://en.wikipedia.org/wiki/Manufacturing
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(Goncalves and Almeida 2002; Zhang et al. 2007; Gu et al. 2007), ant colony 

optimization (Zhang et al. 2007; Sulaiman, Choo, and Chong 2011; Zheng et al. 

2013), particle swarm optimization (Dou, Li, and Lv 2011; Dou, Su, and Li 2011; 

Dou, Li, and Su 2013), Petri net (Kilincci and Bayhan 2006; Kilincci and Bayhan 

2008; Kilincci 2010), tabu search (Lapierre, Ruiz, and Soriano 2006), bacterial 

foraging optimization (Atasagun and Kara 2014) or other heuristic algorithms (Fathi 

et al. 2011; Ariffin, Fathi, and Ismail 2012; Yeh and Kao 2009; Blum 2011; Tang et 

al. 2011; Avikal, Mishra, and Jain 2012). 

In a realistic manufacturing environment, the task time maybe random due to 

worker fatigue, low skill levels job dissatisfaction, poorly maintained equipment, 

defects in raw materials etc. Since data in real-world problems are often afflicted with 

uncertainty, imprecision and vagueness due to both machine and human factors, they 

can only be estimated as within uncertainty. Several researchers have been attempted 

to incorporate fuzzy information in their effort to solve SALBP through various types 

of algorithms. Kalender ,Yilmaz, and Turkbey (2008) have developed an algorithm to 

solve traditional assembly line balancing problem (ALPB) with fuzzy operation times. 

Ozcan and Toklu (2009) have presented a fuzzy goal programming model for 

imprecise goals for two-sided assembly line balancing. Tapkan, Ozbakir, and 

Baykasoglu (2012) have solved two-sided ALPB by employing positional, zoning and 

synchronous task constraints via a bees algorithm. Mutlu and Ozgormus (2012) have 

considered the physical workload of a task as a fuzzy concept and proposed a fuzzy 

linear programming model to solve ALPB. La Scalia et al. (2013) have used of fuzzy 

set theory as a viable alternative method for modelling and solving the stochastic 

ALPB. In several attempts, GAs have been adopted to solve SALBP in conjunction 

with fuzzy logic. Tsujimura, Gen, and Kubota (1995) have illustrated via a numerical 
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experiment that a genetic algorithm (GA) is an appropriate tool to solve fuzzy 

scheduling problems. In an another attempt,  Gen, Tsujimura, and Li (1996) have used 

a numerical example to solve ALPB with fuzzy processing time by using GAs with 

the objective of minimizing the total operation time in each work station. Similarly, 

Khoshalhan and Zegordi (2003) have presented a GA based approach for both types 

of fuzzy ALPB. Zacharia and Nearchou (2012) have presented a fuzzy extension of 

the SALBP-2 with fuzzy job processing times to deal with the uncertainty occurred in 

production systems. Rajabalipour Cheshmehgaz et al. (2012) have modeled ALBP 

through a multi-criteria fuzzy-GA.  

In the present paper, the SALBP-2 regarding the construction of a real robotic 

arm is under investigation. The metal parts of the robotic arm are manufactured in 

four machining workstations. In order to deal with the variability in task operation 

times, fuzzy set theory (Zadeh 1965) is adopted as a very promising approach for 

modeling and solving stochastic problems. The fuzzy theory is then combined with an 

appropriate GA (Holland 1975; Goldberg 1989) for solving the fuzzy SALBP-2 for 

the assembly line of the robot’s metal frame. To handle more realistically the 

manufacturing of the robot’s metal frame, the processing time for each job is 

considered as fuzzy and is represented by triangular fuzzy membership functions. In 

an attempt to treat relevant imprecise data, fuzzy numbers are introduced to represent 

the processing time of each job, where the membership function of a fuzzy data 

represents the grade of satisfaction of a decision maker. The main contribution of this 

paper is that an effort is being made to enhance the real manufacturing process of a 

robotic arm in terms of time reduction using an optimization algorithm (GA) by 

simultaneously considering the variability and ambiguity associated with real 

situations.  
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The rest of the paper is organized as follows: Section 2 summarizes the 

arithmetics of fuzzy numbers, gives the background of the fuzzy assembly line 

balancing of type 2, and presents the practical problem of manufacturing the robot 

components. Section 3 presents the proposed optimization approach applied for the 

fuzzy assembly line balancing of the robotic arm. Computational results concerning 

the performance of the GA are presented in Section 4, while conclusions and 

directions for future work are pointed out and discussed in Section 5.  

 

2. The fuzzy assembly line balancing problem 

 

2.1. Arithmetic and ranking fuzzy numbers 

Compared to traditional binary sets (where variables may take on true or false values), 

fuzzy logic variables may have a truth value that ranges in degree between 0 and 1. 

Fuzzy logic has been extended to handle the concept of partial truth, where the truth 

value may range between completely true and completely false.  

A fuzzy set is a class of objects with a continuum of grades of membership. 

Such a set is characterized by a membership (characteristic) function which assigns to 

each object a grade of membership ranging between zero and one. The membership 

function which represents a fuzzy set A  is usually denoted by  . For an element x , 

the value (A)  is called the membership degree of x  in the fuzzy set A . The 

membership degree (A)  quantifies the grade of membership of the element x  to 

the fuzzy set A . The value 0 means that x  is not a member of the fuzzy set; the value 

http://en.wiktionary.org/wiki/binary
http://en.wikipedia.org/wiki/Two-valued_logic
http://en.wikipedia.org/wiki/Truth_value
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1 means that x  is fully a member of the fuzzy set. The values between 0 and 1 

characterize fuzzy members, which belong to the fuzzy set only partially. 

Due to the nature of processing times, the most commonly used fuzzy sets in 

depicting these values are triangular fuzzy numbers (TFNs) (Fonseca et al. 2005), that 

establish extreme points to represent the most likely and least likely values for the 

individual variables. In this work, the time variables are now represented as TFNs. 

TFN A  is denoted as a triplet of points , i.e.  1 2 3A , ,    , where 1 2 3   . In 

the adapted fuzzy heuristics, the tasks’ fuzzy processing times are accumulated using 

the fuzzy addition operator. In particular, by assuming a second TFN  1 2 3B , ,     

where 1 2 3   , then the following  arithmetics between A  and B  may be 

performed (Kaufmann and Gupta 1985):  

  

 

 

 

 

 

1 1 2 2 3 3

1 3 2 2 3 1

1 1 2 2 3 3

1 3 2 2 3 1

A B , ,

A B , ,
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A / B / , / , /

       

       

       

      

 (1) 

 

To compare the fuzzy numbers, some criteria to rank the fuzzy sets. The ranking 

method in this work involves three ordered criteria ( Kim, Kim, and Kim 1996) which 

are explained in the following.  

The greatest associate ordinary number 1F  is used as a first criterion for 

ranking:  

                          

   1 2 3
1

2
F A

4

   
  (2) 
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If 1F  does not rank the fuzzy numbers then those which have the best 

maximum presumption 2F  (the mode) will be chosen:                                    

 

  2 2F A   (3) 

 

If 1F  and 2F  do not rank the fuzzy numbers then the divergence 3F  (the 

distance between two end-points) will be used as third criterion:    

          

  3 3 1F A    (4) 

 

Consider a set Q composed of the TFNs iA , i 1,2,....,n . A TFN is called 

major and denoted as *A  when dominates all the others in some criterion, in Q, that 

is, *A max Q (the operator max is the discrete maximum). The decision maker 

chooses some criteria and determines its order of dominance. If the first criterion can 

not determine the major TFN then the second criterion follows and so on. On the 

contrary, a TFN is called minor when dominated by all others in Q and this operation 

is represented as min. 

 

2.2. Fundamentals of fuzzy assembly line balancing of type-2 

The fuzzy SALBP can be stated as follows: mworkstations are arranged along an 

assembly line. Manufacturing a single product on the line requires the partitioning of 

the total work into a set  1,...,V n  of n  elementary operations called tasks. Each 
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task  j  is performed on exactly one station and requires a fuzzy processing time t j . 

Let  S 1,...,z z m  be the station load of station z  (i.e. the set of tasks assigned to 

z ), with a cumulated fuzzy task time  
S

S  =1,...,
~

z

z jj
t t z m


 . The tasks are 

partially ordered by precedence relations defining a directed acyclic graph (DAG) 

 ,G V E  with V  being the set of the nodes denoting the tasks in G  while E  being 

the set of the edges representing the precedence constraints among these tasks. The 

assembly line is associated with a fuzzy cycle time c  denoting the maximum 

processing time available for each station. The aim of SALBP-2 is the minimization 

of the fuzzy cycle time c  (i.e. the maximization of the production rate) given the 

number of workstations m . 

 

3. The proposed optimization approach 

GAs (Holland 1975; Goldberg 1989) are optimization techniques which simulate the 

natural selection mechanism observed in the biological evolution process. A GA has 

global and parallel search capability while is suitable for solving demanding problems 

of high nonlinearity. A GA, in contrast with common search techniques, starts with an 

initial set of random solutions called population (individuals) which satisfy the 

constraints of the problem. Chromosome is called each individual in the population 

representing a solution to the problem at hand. Each chromosome comprises a number 

of structures known as genes. The chromosomes are then regressed via iterations 

known as generations. During each iterative procedure, i.e. generation, the 

chromosomes are estimated by utilizing some measures of fitness. This means that in 

every generation, the fitness of every individual in the population is calculated. Then 

the more fit individuals are selected from the current population, and each individual's 
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genome is changed to form the population of the next generation. This new population 

is then used in the next iteration of the algorithm. The next generation is created 

according to the fitness values by forming new chromosomes. These chromosomes 

arise by merging two chromosomes from current generation using a crossover 

operator or by changing a chromosome utilizing a mutation operator. The complete 

set of chromosomes is called a genotype, and the resulting organism is called a 

phenotype. Generally, the GA after numerous generations converges to the best 

chromosome, which represents the ideal solution to the problem. A typical GA 

includes a genetic representation of the solution domain and an efficient fitness 

function to evaluate the solution domain.  

The proposed GA for the requirements of the present study has the following 

basic components: (a) The representation mechanism which is a method to transform 

phenotypes into genotypes, (b) the decoding mechanism which is a method to map 

phenotypes to solutions, (c) the evaluation mechanism which is a method to compute 

the cost-function for each genotype, (d) the mechanism which generates the initial 

population of the genotypes, (e) the mechanism which generates new genotypes by 

applying operators on the entire population, (f) the control parameters and (g) the 

termination condition. The block diagram of the present GA is illustrated in Figure 1 

while its main steps are explained with more detail in the following sub-sections. 
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Figure 1. The block diagram of the proposed GA. 

 

3.1. The representation mechanism 

A GA can only find possible solutions to a problem when the solutions are 

transformed into a representation which the GA may handle. Thus, an appropriate 

representation mechanism is required to transform possible solutions within the 

context of the original problem, called phenotypes, into individuals within the context 

of the GA, called genotypes. This encoding may be realized via a string of binary 

code, real-valued numbers, integers, or a tree structure. Nevertheless, for mechanical 

engineering problems the most efficient representation is a string of real-valued 

numbers. Thus, in the present study a real-valued GA has been adopted in which 

genotypes are represented by floating-point vectors. Since ALBP solutions are 

represented by strings of integers (Scholl and Becker 2006) the utilized representation 



11 

 

mechanism should allow mapping from the genotypic state-level (the real-valued 

vectors) to the phenotypic level (the actual ALB solutions). This is realized by a 

simplified however efficient topological ordering scheme which is based on the 

relative priorities imposed by the components of a genotype. Assuming the n  task of 

the ALBP with precedence relations given by a DAG  ,G V E , the utilized 

representation mechanism aims to generate a topological sort of G  from a specific n -

dimensional floating-point vector ψ  (genotype). Each vector’s component iψ  

( 1,2,...,i n ) represents the relative priority of task i  ( i V ). The topological sort is 

therefore a ranking of all the tasks in line with their priorities and precedence 

constraints. During the procedure, the tasks with no predecessors are identified and 

put in set V  . Then, the task in V   which has the highest gene’s value in ψ  is 

removed from V and placed in the next available position of a new string (initially 

empty) called partial schedule (PS). The process is continued until the completion of 

PS is achieved.  

 

3.2. The decoding mechanism 

After encoding a specific genotype into a phenotype, the decoding mechanism is 

required to assign the tasks in the generated task-sequence into the stations. The 

proposed technique by Kim et al. (Kim, Kim, and Kim 1996) seems to be more 

effective in contrast with other traditional schemes (Scholl and Becker 2006) and 

therefore preferred in the proposed GA. The utilized scheme consists of the following 

steps:  

 Step 1: Set c  equal to the theoretical minimum fuzzy cycle time, i.e. 

th sumc =t m . 
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 Step 2: Assign as many tasks as possible into the first m-1 workstations. 

Assign all the remaining tasks to the last workstation, m. 

 Step 3: Calculate the fuzzy work load W
~

z  for each workstation z (z=1, ...,m), 

and the potential fuzzy workload PW
~

z  (z=1,...,m-1), where PW
~

z  is the sum of 

S
~

zt  and the processing time of the first task assigned to (z+1)-st station 

(z=1,...,m-1). 

 Step 4: Set  1w max W ,W ,...,W
~ ~ ~

2 mc   and  1 -1min PW ,PW ,...,PW
~ ~ ~

2 mc  . 

 Step 5: If wc >c , then go to Step 2 else Return wc  

 

3.3. The evaluation mechanism 

The evaluation mechanism corresponds to the computation of the objective function 

c  for each phenotype of the current population. The objective with SALBP-2 is to 

minimize the fuzzy cycle time c . The objective function has to be transformed to the 

fitness function f , which is evaluated for all the chromosomes of the population. The 

value of the fitness function for one chromosome expresses its ability to survive and 

be reproduced in the next generation. The fitness function is the inverse of the 

objective function: 

1
f

c
                                                       (5) 

 

Equation (5) aims to maximize the fitness function and consequently forcing 

c  to a minimum value. 
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3.4. The initial population 

In order to initialize the process, the solutions in the first generation have to be 

defined. Commonly, this is done randomly since the main desire is to spread the first 

individuals over the complete search space before converging to more promising 

regions. Nevertheless, when the area of the optimum solution may be estimated 

beforehand then the algorithm could be initiated around this area to speed up the 

convergence. 

 

3.5. The genetic operators 

A genetic operator is used in genetic algorithms to maintain genetic diversity. Genetic 

operators such as crossover, mutation and selection are used in GAs to assure genetic 

variation for the process of evolution. Roulette wheel selection, is the best known 

selection operator and thus adopted here. The concept is to evaluate selection 

probability for each chromosome proportionally to the fitness value. Then a model 

roulette wheel is made which display these probabilities. The selection process is 

based on spinning the specific wheel the number of times equal to population size. 

Crossover is an operator which aims to produce new individuals by joining parts of 

several individuals of the previous generation. The selection of individuals is made 

randomly according to a predefined probability, i.e. one-point crossover rate 

(Michalewicz 1996). Mutation is required to insert new genetic material into the 

population by slightly modifying the genotype representation. In this way, the early 

convergence to local minima is avoided. The modification applied stochastically to 

discover potential better solutions based on the current best solutions. The mutation 

operator is applied by changing a random gene (i.e. a floating number) according to a 

small-predefined probability (mutation rate).  
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3.6. Control parameters 

The most important control parameters are the population size, the crossover ratio, the 

mutation rate and the elitism. 

Population size is one of the important topics to consider in evolutionary 

computation since small population size may lead the algorithm to poor solutions 

while a large population size may require a much more computational time to find a 

solution. The population size selection should be made according to the nature and the 

complexity of the current problem. In the present work, a variety of tests involving the 

influence of the population size have been made and finally the population size has 

been set to 100 for the SALBP-2 under investigation which involves 4 workstations 

and 57 tasks. 

The crossover rate controls the frequency with which the crossover is applied. 

The higher crossover rate, the more quickly new individuals are added to the 

population. Several convergence tests have proved the effectiveness of a crossover 

rate equal to 0.8 for the purpose of the present research. 

The mutation rate defines the probability according which the position of each 

individual in the intermediate population undergoes a random change. A GA with a 

too high mutation rate will inevitably become a random search. Thus, the mutation 

rate is typically chosen to be less than 0.4. The value of 0.1 has been chosen here. 

When creating new population via crossover and mutation, there is a chance that 

the best chromosome will be lost. Elitism is a method according which the best 

chromosome is copied to the new population. A comparison involving the best 

chromosome between current and previous generation is required. Elitism increases 

GA performance since it prevents the loss of the best-found solution. 
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3.7. Termination conditions 

The termination condition should be theoretically satisfied and thus end the algorithm 

when the optimum solution has been found. However, for many optimization 

problems the ideal solution is unknown and therefore there is always an uncertainty 

whether better solutions exist. In addition stochastic procedures may require a 

significant computational cost and take a long time to converge to the optimum 

solution. Commonly used termination conditions are therefore based on the maximum 

allowed number of iterations (generations) which however present limitations since it 

is difficult to determine beforehand the number of generations needed to find near-

optimum solutions. Thus, in the proposed scheme, the termination of the GA is 

chosen to occur when the repetitions of the same solution have reached a 

predetermined number. Consequently, the algorithm terminates when a specific 

chromosome has been appeared for a sufficiently large number of times. 

 

4. Description of assembly under investigation  

The robotic arm that has been manufactured for the requirements of the present study 

is approximately 600 mm in length, able to pick up small object of 0.3kg, has 6 

degrees of freedom and is constructed mainly from 3mm aluminium sheet. The 

pivoting parts include six standard step motors in order to keep the design as simple 

as possible. Additionally, the robotic arm under investigation incorporates a controller 

which governs the arm movements and operations. A simple, scalable control system 

has been adopted to allow coordinated Cartesian control which offers expandability 

for future research. The idea behind the specific design was to investigate the 

possibility of developing a simple robotic arm capable of moving small objects that is 
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constructed by using exclusively aluminium bars and sheets as well as basic 

conventional machines during manufacture.  

Figure 2 depicts the manufactured robotic arm that consists of a waist, a 

shoulder, an elbow, a wrist and a gripper which are connected to each other via metal 

links. These links are appropriately designed and machined so that they may offer 

stability, smooth motion and, if required, effective support for specific motors.  

 

 

Figure 2.  Robotic arm description. 

 

The mechanical design of the robotic arm includes a heavy bottom base of 

20mm thick aluminium which provides enough room for the more powerful motor 

which is responsible for the waist rotation. A column joined with a lighter upper base 

is manufactured to offer smooth shoulder rotation and appropriate motor support. The 

Link/arm 1 connects the shoulder and elbow while the link/arm 2 connects the elbow 

with the wrist. The second link is formed in such a way to bracket both the elbow 

rotation and wrist bend motors. The wrist rotation motor is attached on link/arm 3 

which connects the wrist bend with the wrist rotation mechanisms. The gripper is 
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appropriately attached on the outer edge of this third link.  All these robotic parts are 

coupled with appropriate cylindrical joints. The metal frame of the above described 

robotic arm is composed of several aluminium components which are illustrated and 

numbered in Figure 3. 

 

 

Figure 3.   Numbered components of the robotic aluminium frame. 

  

The metal components of the robotic frame have been machined using 

conventional processes in which appropriate pieces of raw material have been 

progressively cut and/or formed into the desired final shape and size. The whole 

machining process has been taken place in a simple assembly line of four 

workstations. The assembly line under consideration includes four types of machining 

operations, i.e. milling, drilling, lathing and bending. Conventional machines such as 

those depicted in Figure 4 have been utilized for the purpose of the present study. 
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Figure 4.  The four types of machines of the assembly line. 

 

5. Computational study 

According to Figure 3, in order to construct the metal structure of the robotic arm 14 

different type of components should be manufactured using the aforementioned 

machines. To be more precise, a total of number of 26 parts should be machined since 

the robotic arm design requires 4 and 10 items of component 13 and 14, respectively. 

Table 1 summarizes the fuzzy execution times for the 57 total tasks associated with 

the robot components. The computational study is focused on finding the optimum 

sequence of tasks assigned to stations which may lead to the minimum total fuzzy 

time for executing all tasks.  

Considering fuzziness for the processing times, fuzzy data are represented by 

triangular fuzzy numbers. TFN is one of the most commonly used in the literature 

shapes of fuzzy numbers representation (Fonseca et al. 2005), composed of three 

estimates (the lowest expected, the most likely and the highest expected) of the 

unknown individual value. The reason of using triangular fuzzy shapes is because of 
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their computational simplicity in comparison with other fuzzy shapes, considering the 

calculations in Equations (1). TFNs differ from statistical distributions in the fact that 

they do not require historical data to establish their values. This is a major advantage 

of using TFNs as opposed to statistics. 

 In practice, this was achieved by assigning the 57 total tasks to 10 “workers” 

and writing down the resulting times. For all tasks, the most likely values for the 

TFNs (i.e. the fuzzy element with the membership value of 1) are considered to be the 

middle written times at the last column of Table 1. These most likely values for each 

task were set equal to the average of the corresponding ten measured times by the ten 

“workers”. The extreme TFN values in Table 1 were taken equal to the minimum and 

maximum times of the 10 execution times provided by the “workers”, respectively.  
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Table 1. Fuzzy execution times for each robot component. 

No of tasks No of component Type of task Total fuzzy time (s) 

1 1 milling (3096, 3105, 3111) 

2 1 drilling (73, 74, 76) 

3 2 milling (788, 792, 795) 

4 2 drilling (51, 53, 55) 

5 3 milling (822, 826, 831) 

6 3 drilling (40, 41, 42) 

7 4 milling (858, 863, 868) 

8 4 drilling (66, 67, 69) 

9 5 milling (518, 523, 527) 

10 5 drilling (44, 45, 46) 

11 6 milling (842, 849, 854) 

12 6 drilling (42, 43, 45) 

13 7 milling (1043, 1052, 1058) 

14 7 drilling (17, 18, 19) 

15 8 milling (780, 785, 789) 

16 8 drilling (57, 59, 61) 

17 9 milling (803, 806, 810) 

18 9 drilling (54, 55, 57) 

19 10 milling (540, 544, 549) 

20 10 drilling (24, 25, 26) 

21 10 bending (40, 41, 42) 

22 11 milling (390, 396, 401) 

23 11 drilling (25, 26, 27) 

24 12 milling (381, 385, 390) 

25 12 drilling (40, 41, 42) 

26 13 (1 out of 4 items) milling (947, 951, 956) 

27 13 drilling (248, 252, 255) 

28 13 bending (39, 41, 42) 

29-37 13 (3 items)   

38 14 (1 out of 10 items) lathing (1560, 1569, 1576) 

39 14 drilling (63, 65, 66) 

40-57 14 (9 items)   
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The precedence constraints are summarized in the following: 

 task1 precedes task2 

 task3 precedes task4 

 task5 precedes task6  

 task7 precedes task8 

 task9 precedes task10 

 task11 precedes task12 

 task13 precedes task14 

 task15 precedes task16 

 task17 precedes task18 

 task19 precedes task20 and task20 precedes task21 

 task22 precedes task23 

 task24 precedes task25 

 task26 precedes task27 and task27 precedes task28 

 task29 precedes task30 and task30 precedes task31 

 task32 precedes task33 and task33 precedes task34 

 task35 precedes task36 and task37 precedes task38 

 task38 precedes task39 

 task40 precedes task41 

 task42 precedes task43 

 task44 precedes task45 

 task46 precedes task47 

 task48 precedes task49 

 task50 precedes task51 

 task50 precedes task51 
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 task52 precedes task53 

 task54 precedes task55 

 task56 precedes task57 

The minimum fuzzy cycle time is yielded considering the total fuzzy 

processing time for each of the 57 tasks (see Table 1) as well precedence relations 

given above. The resulted minimum fuzzy cycle time after running the proposed GA 

is (8150, 8211, 8259) s. Concerning the station load for each workstation, it is 

provided by the GA best solution considering the aforementioned constraints and 

involves the task sequence assigned to each workstation. In particular, Workstation1 

starts with task 53 and after finishing, it continues with task 24 and so on until it 

finishes with task 3. Similarly, Workstation2 starts with task 22, then accomplishes 

task 38 and finishes with task 10. The robotic arm is manufactured when all tasks 

assigned to each workstation have been accomplished. For the problem addressed 

here, the resulting task sequence and the fuzzy station time for each workstation are 

presented in Table 2. The simulation test was implemented in Matlab and run on a 

Pentium IV 2.13 GHz core2 PC and the CPU time was 993 sec. 

 

Table 2. Results provided by the proposed GA. 

Workstation z  Task sequence (Sz ) 
Fuzzy station time ( S

~
zt ) (s) 

1 52-53-24-40-35-17-5-6-29-30-3 (8159, 8207, 8253) 

2 22-38-39-31-4-25-15-16-11-19-20-21-23-12-1-9-10 (8151, 8210, 8259) 

3 18-42-43-48-49-56-57-32-33-34-50-51-2-36-37 (8140, 8202, 8251) 

4 26-27-54-55-44-45-28-13-14-46-47-7-8-41 (8150, 8211, 8259) 

Fuzzy cycle c  (s) (8150, 8211, 8259) 
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Figure 5 depicts the triangular membership function for the fuzzy cycle time. 

It is clear that the least likely values are 8150 and 8259 while it is found that the most 

likely value is 8211. 

0

0,2

0,4

0,6

0,8

1

8150 8160 8170 8180 8190 8200 8210 8220 8230 8240 8250 8260

 

Figure 5.   The fuzzy cycle time c . 

 

To compare the fuzzy numbers, the greatest associate ordinary number (see 

Equation (2)) is used. Thus, the value for the cycle time presented in the following has 

been calculated through Equation (2), Figure 6, 7 and 8 illustrate the evolution of the 

GA through the generations for the best, average and worst individuals, respectively. 

It is clear from Figure 6 that the best cycle time (equal to 8207.75 s corresponding to 

(8150, 8211, 8259) s) is achieved in the 1459
th

 generation.  
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Figure 6.  Best cycle time versus generations. 

 

 

Figure 7. Average cycle time versus generations. 
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Figure 8. Worst cycle time versus generations. 

 

6. Conclusions 

Due to the fact that the nature of manufacturing systems is accompanied with 

uncertainty, the main idea for this paper is to treat the problem considering fuzziness 

in the operation times. Thus, the main focus of this work lies on the construction 

process considering variability and ambiguity associated with real situations. In this 

context, this paper studies the solution of the fuzzy assembly line balancing problem 

type-2 for the real problem of constructing a robotic arm. The robot components are 

formed using a number of machine tools, which are handled by a specific number of 

“workers”. The metal parts of the robotic arm are manufactured in four machining 

workstations. The construction process is enhanced in terms of time reduction using a 

GA that takes into account fuzziness in times and is subject to the constraints imposed 

by the precedence relations.  

The proposed approach was tested in a real manufacturing environment, where 

real data was yielded for the simulation tests. The experimental results demonstrated 
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that the approach is effective and efficient at determining the optimum fuzzy cycle 

time for the accomplishment of robotic arm construction without violating the 

precedence constraints. Considering future research, a U-shaped assembly line layout 

could be applied, where stations work at two segments of the line facing each other 

simultaneously. 
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