
1

A genetic algorithm to optimize the manufacturing process of a robotic arm

under fuzziness

P. T. Zacharia · S. A. Tsirkas · G. Kabouridis · A. Ch. Yiannopoulos · G. I. Giannopoulos
*

Department of Mechanical Engineering, Technological Educational Institute of Western Greece,

Megalou Alexandrou 1, 26334 Patras, Greece

This paper presents an application of the fuzzy assembly line balancing problem of

type 2 (SALBP-2), which is an NP-hard problem. The optimization tool for the

solution of the fuzzy SALBP-2 is a Genetic Algorithm (GA). The efficiency of the

proposed approach is tested on the construction process of a robotic arm. Bearing in

mind that the data obtained from more realistic situations are imprecise and uncertain,

the consideration of fuzziness for the solution of SALBP-2 is of great interest. Thus,

real data values for the processing times are gathered and estimated as within

uncertainty. Then, fuzzy processing times are used for finding the optimum cycle time

needed for finishing the construction of the robotic arm. The experimental results

demonstrate the effectiveness and efficiency of the proposed GA in determining the

optimum sequence of the tasks assigned to workstations and providing the optimum

fuzzy cycle time.

Keywords: fuzzy numbers; genetic algorithm; production; process planning; machine

tools; metal parts

__

*Corresponding author. E-mail: ggiannopoulos@teiwest.gr

mailto:ggiannopoulos@teiwest.gr

2

1. Introduction

In mass production systems, an important problem is the assembly line problem. An

assembly line is a manufacturing technique according which parts are added in

sequence from workstation to workstation until the final assembly is produced. Each

station has to complete a set of tasks on parts moving along the line. There are

numerous studies related with assembly line systems which focus on the

determination of the set of tasks which have to be assigned to each workstation under

a given cycle and the constraints of precedence relationships. This kind of problem is

well known as the simple assembly line balancing problem (SALBP) (Scholl and

Becker 2006).

The most famous versions of the abovementioned problem is the SALBP type

1 (SALBP-1) and the SALBP type 2 (SALBP-2). SALBP-1 (Goncalves and Almeida

2002; Lapierre, Ruiz, and Soriano 2006; Kilincci and Bayhan 2006; Zhang et al.

2007; Nearchou 2008; Kilincci and Bayhan 2008; Yeh and Kao 2009; Sulaiman,

Choo, and Chong 2011; Dou, Li, and Lv 2011; Dou, Su, and Li 2011; Fathi et al.

2011; Ariffin, Fathi, and Ismail 2012; Dou, Li, and Su 2013; Atasagun and Kara

2014) is present when the aim is to effectively assign tasks to workstations by

minimizing the number of stations for a pre-specified cycle time. This problem

commonly arises when new assembly lines are to be designed by a company. On the

other hand SALBP-2 (Zhang et al. 2007; Gu et al. 2007; Kilincci 2010; Blum 2011;

Tang et al. 2011; Avikal, Mishra, and Jain 2012; Zheng et al. 2013) is present when

the aim is to minimize the cycle time for a specific number of stations. This kind of

problem usually arises when changes in the production process of a product are to

take place in the effort to improve the line efficiency. Several methods have been

proposed for the solution of SALBP problems such as genetic algorithms (GAs)

http://en.wikipedia.org/wiki/Manufacturing

3

(Goncalves and Almeida 2002; Zhang et al. 2007; Gu et al. 2007), ant colony

optimization (Zhang et al. 2007; Sulaiman, Choo, and Chong 2011; Zheng et al.

2013), particle swarm optimization (Dou, Li, and Lv 2011; Dou, Su, and Li 2011;

Dou, Li, and Su 2013), Petri net (Kilincci and Bayhan 2006; Kilincci and Bayhan

2008; Kilincci 2010), tabu search (Lapierre, Ruiz, and Soriano 2006), bacterial

foraging optimization (Atasagun and Kara 2014) or other heuristic algorithms (Fathi

et al. 2011; Ariffin, Fathi, and Ismail 2012; Yeh and Kao 2009; Blum 2011; Tang et

al. 2011; Avikal, Mishra, and Jain 2012).

In a realistic manufacturing environment, the task time maybe random due to

worker fatigue, low skill levels job dissatisfaction, poorly maintained equipment,

defects in raw materials etc. Since data in real-world problems are often afflicted with

uncertainty, imprecision and vagueness due to both machine and human factors, they

can only be estimated as within uncertainty. Several researchers have been attempted

to incorporate fuzzy information in their effort to solve SALBP through various types

of algorithms. Kalender ,Yilmaz, and Turkbey (2008) have developed an algorithm to

solve traditional assembly line balancing problem (ALPB) with fuzzy operation times.

Ozcan and Toklu (2009) have presented a fuzzy goal programming model for

imprecise goals for two-sided assembly line balancing. Tapkan, Ozbakir, and

Baykasoglu (2012) have solved two-sided ALPB by employing positional, zoning and

synchronous task constraints via a bees algorithm. Mutlu and Ozgormus (2012) have

considered the physical workload of a task as a fuzzy concept and proposed a fuzzy

linear programming model to solve ALPB. La Scalia et al. (2013) have used of fuzzy

set theory as a viable alternative method for modelling and solving the stochastic

ALPB. In several attempts, GAs have been adopted to solve SALBP in conjunction

with fuzzy logic. Tsujimura, Gen, and Kubota (1995) have illustrated via a numerical

4

experiment that a genetic algorithm (GA) is an appropriate tool to solve fuzzy

scheduling problems. In an another attempt, Gen, Tsujimura, and Li (1996) have used

a numerical example to solve ALPB with fuzzy processing time by using GAs with

the objective of minimizing the total operation time in each work station. Similarly,

Khoshalhan and Zegordi (2003) have presented a GA based approach for both types

of fuzzy ALPB. Zacharia and Nearchou (2012) have presented a fuzzy extension of

the SALBP-2 with fuzzy job processing times to deal with the uncertainty occurred in

production systems. Rajabalipour Cheshmehgaz et al. (2012) have modeled ALBP

through a multi-criteria fuzzy-GA.

In the present paper, the SALBP-2 regarding the construction of a real robotic

arm is under investigation. The metal parts of the robotic arm are manufactured in

four machining workstations. In order to deal with the variability in task operation

times, fuzzy set theory (Zadeh 1965) is adopted as a very promising approach for

modeling and solving stochastic problems. The fuzzy theory is then combined with an

appropriate GA (Holland 1975; Goldberg 1989) for solving the fuzzy SALBP-2 for

the assembly line of the robot’s metal frame. To handle more realistically the

manufacturing of the robot’s metal frame, the processing time for each job is

considered as fuzzy and is represented by triangular fuzzy membership functions. In

an attempt to treat relevant imprecise data, fuzzy numbers are introduced to represent

the processing time of each job, where the membership function of a fuzzy data

represents the grade of satisfaction of a decision maker. The main contribution of this

paper is that an effort is being made to enhance the real manufacturing process of a

robotic arm in terms of time reduction using an optimization algorithm (GA) by

simultaneously considering the variability and ambiguity associated with real

situations.

5

The rest of the paper is organized as follows: Section 2 summarizes the

arithmetics of fuzzy numbers, gives the background of the fuzzy assembly line

balancing of type 2, and presents the practical problem of manufacturing the robot

components. Section 3 presents the proposed optimization approach applied for the

fuzzy assembly line balancing of the robotic arm. Computational results concerning

the performance of the GA are presented in Section 4, while conclusions and

directions for future work are pointed out and discussed in Section 5.

2. The fuzzy assembly line balancing problem

2.1. Arithmetic and ranking fuzzy numbers

Compared to traditional binary sets (where variables may take on true or false values),

fuzzy logic variables may have a truth value that ranges in degree between 0 and 1.

Fuzzy logic has been extended to handle the concept of partial truth, where the truth

value may range between completely true and completely false.

A fuzzy set is a class of objects with a continuum of grades of membership.

Such a set is characterized by a membership (characteristic) function which assigns to

each object a grade of membership ranging between zero and one. The membership

function which represents a fuzzy set A is usually denoted by . For an element x ,

the value (A) is called the membership degree of x in the fuzzy set A . The

membership degree (A) quantifies the grade of membership of the element x to

the fuzzy set A . The value 0 means that x is not a member of the fuzzy set; the value

http://en.wiktionary.org/wiki/binary
http://en.wikipedia.org/wiki/Two-valued_logic
http://en.wikipedia.org/wiki/Truth_value

6

1 means that x is fully a member of the fuzzy set. The values between 0 and 1

characterize fuzzy members, which belong to the fuzzy set only partially.

Due to the nature of processing times, the most commonly used fuzzy sets in

depicting these values are triangular fuzzy numbers (TFNs) (Fonseca et al. 2005), that

establish extreme points to represent the most likely and least likely values for the

individual variables. In this work, the time variables are now represented as TFNs.

TFN A is denoted as a triplet of points , i.e. 1 2 3A , , , where 1 2 3 . In

the adapted fuzzy heuristics, the tasks’ fuzzy processing times are accumulated using

the fuzzy addition operator. In particular, by assuming a second TFN 1 2 3B , ,

where 1 2 3 , then the following arithmetics between A and B may be

performed (Kaufmann and Gupta 1985):

1 1 2 2 3 3

1 3 2 2 3 1

1 1 2 2 3 3

1 3 2 2 3 1

A B , ,

A B , ,

A B , ,

A / B / , / , /

 (1)

To compare the fuzzy numbers, some criteria to rank the fuzzy sets. The ranking

method in this work involves three ordered criteria (Kim, Kim, and Kim 1996) which

are explained in the following.

The greatest associate ordinary number 1F is used as a first criterion for

ranking:

 1 2 3
1

2
F A

4

 (2)

7

If 1F does not rank the fuzzy numbers then those which have the best

maximum presumption 2F (the mode) will be chosen:

 2 2F A (3)

If 1F and 2F do not rank the fuzzy numbers then the divergence 3F (the

distance between two end-points) will be used as third criterion:

 3 3 1F A (4)

Consider a set Q composed of the TFNs iA , i 1,2,....,n . A TFN is called

major and denoted as *A when dominates all the others in some criterion, in Q, that

is, *A max Q (the operator max is the discrete maximum). The decision maker

chooses some criteria and determines its order of dominance. If the first criterion can

not determine the major TFN then the second criterion follows and so on. On the

contrary, a TFN is called minor when dominated by all others in Q and this operation

is represented as min.

2.2. Fundamentals of fuzzy assembly line balancing of type-2

The fuzzy SALBP can be stated as follows: mworkstations are arranged along an

assembly line. Manufacturing a single product on the line requires the partitioning of

the total work into a set 1,...,V n of n elementary operations called tasks. Each

8

task j is performed on exactly one station and requires a fuzzy processing time t j .

Let S 1,...,z z m be the station load of station z (i.e. the set of tasks assigned to

z), with a cumulated fuzzy task time
S

S =1,...,
~

z

z jj
t t z m

 . The tasks are

partially ordered by precedence relations defining a directed acyclic graph (DAG)

 ,G V E with V being the set of the nodes denoting the tasks in G while E being

the set of the edges representing the precedence constraints among these tasks. The

assembly line is associated with a fuzzy cycle time c denoting the maximum

processing time available for each station. The aim of SALBP-2 is the minimization

of the fuzzy cycle time c (i.e. the maximization of the production rate) given the

number of workstations m .

3. The proposed optimization approach

GAs (Holland 1975; Goldberg 1989) are optimization techniques which simulate the

natural selection mechanism observed in the biological evolution process. A GA has

global and parallel search capability while is suitable for solving demanding problems

of high nonlinearity. A GA, in contrast with common search techniques, starts with an

initial set of random solutions called population (individuals) which satisfy the

constraints of the problem. Chromosome is called each individual in the population

representing a solution to the problem at hand. Each chromosome comprises a number

of structures known as genes. The chromosomes are then regressed via iterations

known as generations. During each iterative procedure, i.e. generation, the

chromosomes are estimated by utilizing some measures of fitness. This means that in

every generation, the fitness of every individual in the population is calculated. Then

the more fit individuals are selected from the current population, and each individual's

9

genome is changed to form the population of the next generation. This new population

is then used in the next iteration of the algorithm. The next generation is created

according to the fitness values by forming new chromosomes. These chromosomes

arise by merging two chromosomes from current generation using a crossover

operator or by changing a chromosome utilizing a mutation operator. The complete

set of chromosomes is called a genotype, and the resulting organism is called a

phenotype. Generally, the GA after numerous generations converges to the best

chromosome, which represents the ideal solution to the problem. A typical GA

includes a genetic representation of the solution domain and an efficient fitness

function to evaluate the solution domain.

The proposed GA for the requirements of the present study has the following

basic components: (a) The representation mechanism which is a method to transform

phenotypes into genotypes, (b) the decoding mechanism which is a method to map

phenotypes to solutions, (c) the evaluation mechanism which is a method to compute

the cost-function for each genotype, (d) the mechanism which generates the initial

population of the genotypes, (e) the mechanism which generates new genotypes by

applying operators on the entire population, (f) the control parameters and (g) the

termination condition. The block diagram of the present GA is illustrated in Figure 1

while its main steps are explained with more detail in the following sub-sections.

10

Determination of

control parameters

Generation of initial

population

Fitness evaluation

Reproduction

Crossover

Mutation

Fitness evaluation

Termination

of GA

End

Yes

No

Figure 1. The block diagram of the proposed GA.

3.1. The representation mechanism

A GA can only find possible solutions to a problem when the solutions are

transformed into a representation which the GA may handle. Thus, an appropriate

representation mechanism is required to transform possible solutions within the

context of the original problem, called phenotypes, into individuals within the context

of the GA, called genotypes. This encoding may be realized via a string of binary

code, real-valued numbers, integers, or a tree structure. Nevertheless, for mechanical

engineering problems the most efficient representation is a string of real-valued

numbers. Thus, in the present study a real-valued GA has been adopted in which

genotypes are represented by floating-point vectors. Since ALBP solutions are

represented by strings of integers (Scholl and Becker 2006) the utilized representation

11

mechanism should allow mapping from the genotypic state-level (the real-valued

vectors) to the phenotypic level (the actual ALB solutions). This is realized by a

simplified however efficient topological ordering scheme which is based on the

relative priorities imposed by the components of a genotype. Assuming the n task of

the ALBP with precedence relations given by a DAG ,G V E , the utilized

representation mechanism aims to generate a topological sort of G from a specific n -

dimensional floating-point vector ψ (genotype). Each vector’s component iψ

(1,2,...,i n) represents the relative priority of task i (i V). The topological sort is

therefore a ranking of all the tasks in line with their priorities and precedence

constraints. During the procedure, the tasks with no predecessors are identified and

put in set V . Then, the task in V which has the highest gene’s value in ψ is

removed from V and placed in the next available position of a new string (initially

empty) called partial schedule (PS). The process is continued until the completion of

PS is achieved.

3.2. The decoding mechanism

After encoding a specific genotype into a phenotype, the decoding mechanism is

required to assign the tasks in the generated task-sequence into the stations. The

proposed technique by Kim et al. (Kim, Kim, and Kim 1996) seems to be more

effective in contrast with other traditional schemes (Scholl and Becker 2006) and

therefore preferred in the proposed GA. The utilized scheme consists of the following

steps:

 Step 1: Set c equal to the theoretical minimum fuzzy cycle time, i.e.

th sumc =t m .

12

 Step 2: Assign as many tasks as possible into the first m-1 workstations.

Assign all the remaining tasks to the last workstation, m.

 Step 3: Calculate the fuzzy work load W
~

z for each workstation z (z=1, ...,m),

and the potential fuzzy workload PW
~

z (z=1,...,m-1), where PW
~

z is the sum of

S
~

zt and the processing time of the first task assigned to (z+1)-st station

(z=1,...,m-1).

 Step 4: Set 1w max W ,W ,...,W
~ ~ ~

2 mc and 1 -1min PW ,PW ,...,PW
~ ~ ~

2 mc .

 Step 5: If wc >c , then go to Step 2 else Return wc

3.3. The evaluation mechanism

The evaluation mechanism corresponds to the computation of the objective function

c for each phenotype of the current population. The objective with SALBP-2 is to

minimize the fuzzy cycle time c . The objective function has to be transformed to the

fitness function f , which is evaluated for all the chromosomes of the population. The

value of the fitness function for one chromosome expresses its ability to survive and

be reproduced in the next generation. The fitness function is the inverse of the

objective function:

1
f

c
 (5)

Equation (5) aims to maximize the fitness function and consequently forcing

c to a minimum value.

13

3.4. The initial population

In order to initialize the process, the solutions in the first generation have to be

defined. Commonly, this is done randomly since the main desire is to spread the first

individuals over the complete search space before converging to more promising

regions. Nevertheless, when the area of the optimum solution may be estimated

beforehand then the algorithm could be initiated around this area to speed up the

convergence.

3.5. The genetic operators

A genetic operator is used in genetic algorithms to maintain genetic diversity. Genetic

operators such as crossover, mutation and selection are used in GAs to assure genetic

variation for the process of evolution. Roulette wheel selection, is the best known

selection operator and thus adopted here. The concept is to evaluate selection

probability for each chromosome proportionally to the fitness value. Then a model

roulette wheel is made which display these probabilities. The selection process is

based on spinning the specific wheel the number of times equal to population size.

Crossover is an operator which aims to produce new individuals by joining parts of

several individuals of the previous generation. The selection of individuals is made

randomly according to a predefined probability, i.e. one-point crossover rate

(Michalewicz 1996). Mutation is required to insert new genetic material into the

population by slightly modifying the genotype representation. In this way, the early

convergence to local minima is avoided. The modification applied stochastically to

discover potential better solutions based on the current best solutions. The mutation

operator is applied by changing a random gene (i.e. a floating number) according to a

small-predefined probability (mutation rate).

14

3.6. Control parameters

The most important control parameters are the population size, the crossover ratio, the

mutation rate and the elitism.

Population size is one of the important topics to consider in evolutionary

computation since small population size may lead the algorithm to poor solutions

while a large population size may require a much more computational time to find a

solution. The population size selection should be made according to the nature and the

complexity of the current problem. In the present work, a variety of tests involving the

influence of the population size have been made and finally the population size has

been set to 100 for the SALBP-2 under investigation which involves 4 workstations

and 57 tasks.

The crossover rate controls the frequency with which the crossover is applied.

The higher crossover rate, the more quickly new individuals are added to the

population. Several convergence tests have proved the effectiveness of a crossover

rate equal to 0.8 for the purpose of the present research.

The mutation rate defines the probability according which the position of each

individual in the intermediate population undergoes a random change. A GA with a

too high mutation rate will inevitably become a random search. Thus, the mutation

rate is typically chosen to be less than 0.4. The value of 0.1 has been chosen here.

When creating new population via crossover and mutation, there is a chance that

the best chromosome will be lost. Elitism is a method according which the best

chromosome is copied to the new population. A comparison involving the best

chromosome between current and previous generation is required. Elitism increases

GA performance since it prevents the loss of the best-found solution.

15

3.7. Termination conditions

The termination condition should be theoretically satisfied and thus end the algorithm

when the optimum solution has been found. However, for many optimization

problems the ideal solution is unknown and therefore there is always an uncertainty

whether better solutions exist. In addition stochastic procedures may require a

significant computational cost and take a long time to converge to the optimum

solution. Commonly used termination conditions are therefore based on the maximum

allowed number of iterations (generations) which however present limitations since it

is difficult to determine beforehand the number of generations needed to find near-

optimum solutions. Thus, in the proposed scheme, the termination of the GA is

chosen to occur when the repetitions of the same solution have reached a

predetermined number. Consequently, the algorithm terminates when a specific

chromosome has been appeared for a sufficiently large number of times.

4. Description of assembly under investigation

The robotic arm that has been manufactured for the requirements of the present study

is approximately 600 mm in length, able to pick up small object of 0.3kg, has 6

degrees of freedom and is constructed mainly from 3mm aluminium sheet. The

pivoting parts include six standard step motors in order to keep the design as simple

as possible. Additionally, the robotic arm under investigation incorporates a controller

which governs the arm movements and operations. A simple, scalable control system

has been adopted to allow coordinated Cartesian control which offers expandability

for future research. The idea behind the specific design was to investigate the

possibility of developing a simple robotic arm capable of moving small objects that is

16

constructed by using exclusively aluminium bars and sheets as well as basic

conventional machines during manufacture.

Figure 2 depicts the manufactured robotic arm that consists of a waist, a

shoulder, an elbow, a wrist and a gripper which are connected to each other via metal

links. These links are appropriately designed and machined so that they may offer

stability, smooth motion and, if required, effective support for specific motors.

Figure 2. Robotic arm description.

The mechanical design of the robotic arm includes a heavy bottom base of

20mm thick aluminium which provides enough room for the more powerful motor

which is responsible for the waist rotation. A column joined with a lighter upper base

is manufactured to offer smooth shoulder rotation and appropriate motor support. The

Link/arm 1 connects the shoulder and elbow while the link/arm 2 connects the elbow

with the wrist. The second link is formed in such a way to bracket both the elbow

rotation and wrist bend motors. The wrist rotation motor is attached on link/arm 3

which connects the wrist bend with the wrist rotation mechanisms. The gripper is

17

appropriately attached on the outer edge of this third link. All these robotic parts are

coupled with appropriate cylindrical joints. The metal frame of the above described

robotic arm is composed of several aluminium components which are illustrated and

numbered in Figure 3.

Figure 3. Numbered components of the robotic aluminium frame.

The metal components of the robotic frame have been machined using

conventional processes in which appropriate pieces of raw material have been

progressively cut and/or formed into the desired final shape and size. The whole

machining process has been taken place in a simple assembly line of four

workstations. The assembly line under consideration includes four types of machining

operations, i.e. milling, drilling, lathing and bending. Conventional machines such as

those depicted in Figure 4 have been utilized for the purpose of the present study.

18

Figure 4. The four types of machines of the assembly line.

5. Computational study

According to Figure 3, in order to construct the metal structure of the robotic arm 14

different type of components should be manufactured using the aforementioned

machines. To be more precise, a total of number of 26 parts should be machined since

the robotic arm design requires 4 and 10 items of component 13 and 14, respectively.

Table 1 summarizes the fuzzy execution times for the 57 total tasks associated with

the robot components. The computational study is focused on finding the optimum

sequence of tasks assigned to stations which may lead to the minimum total fuzzy

time for executing all tasks.

Considering fuzziness for the processing times, fuzzy data are represented by

triangular fuzzy numbers. TFN is one of the most commonly used in the literature

shapes of fuzzy numbers representation (Fonseca et al. 2005), composed of three

estimates (the lowest expected, the most likely and the highest expected) of the

unknown individual value. The reason of using triangular fuzzy shapes is because of

19

their computational simplicity in comparison with other fuzzy shapes, considering the

calculations in Equations (1). TFNs differ from statistical distributions in the fact that

they do not require historical data to establish their values. This is a major advantage

of using TFNs as opposed to statistics.

 In practice, this was achieved by assigning the 57 total tasks to 10 “workers”

and writing down the resulting times. For all tasks, the most likely values for the

TFNs (i.e. the fuzzy element with the membership value of 1) are considered to be the

middle written times at the last column of Table 1. These most likely values for each

task were set equal to the average of the corresponding ten measured times by the ten

“workers”. The extreme TFN values in Table 1 were taken equal to the minimum and

maximum times of the 10 execution times provided by the “workers”, respectively.

20

Table 1. Fuzzy execution times for each robot component.

No of tasks No of component Type of task Total fuzzy time (s)

1 1 milling (3096, 3105, 3111)

2 1 drilling (73, 74, 76)

3 2 milling (788, 792, 795)

4 2 drilling (51, 53, 55)

5 3 milling (822, 826, 831)

6 3 drilling (40, 41, 42)

7 4 milling (858, 863, 868)

8 4 drilling (66, 67, 69)

9 5 milling (518, 523, 527)

10 5 drilling (44, 45, 46)

11 6 milling (842, 849, 854)

12 6 drilling (42, 43, 45)

13 7 milling (1043, 1052, 1058)

14 7 drilling (17, 18, 19)

15 8 milling (780, 785, 789)

16 8 drilling (57, 59, 61)

17 9 milling (803, 806, 810)

18 9 drilling (54, 55, 57)

19 10 milling (540, 544, 549)

20 10 drilling (24, 25, 26)

21 10 bending (40, 41, 42)

22 11 milling (390, 396, 401)

23 11 drilling (25, 26, 27)

24 12 milling (381, 385, 390)

25 12 drilling (40, 41, 42)

26 13 (1 out of 4 items) milling (947, 951, 956)

27 13 drilling (248, 252, 255)

28 13 bending (39, 41, 42)

29-37 13 (3 items)

38 14 (1 out of 10 items) lathing (1560, 1569, 1576)

39 14 drilling (63, 65, 66)

40-57 14 (9 items)

21

The precedence constraints are summarized in the following:

 task1 precedes task2

 task3 precedes task4

 task5 precedes task6

 task7 precedes task8

 task9 precedes task10

 task11 precedes task12

 task13 precedes task14

 task15 precedes task16

 task17 precedes task18

 task19 precedes task20 and task20 precedes task21

 task22 precedes task23

 task24 precedes task25

 task26 precedes task27 and task27 precedes task28

 task29 precedes task30 and task30 precedes task31

 task32 precedes task33 and task33 precedes task34

 task35 precedes task36 and task37 precedes task38

 task38 precedes task39

 task40 precedes task41

 task42 precedes task43

 task44 precedes task45

 task46 precedes task47

 task48 precedes task49

 task50 precedes task51

 task50 precedes task51

22

 task52 precedes task53

 task54 precedes task55

 task56 precedes task57

The minimum fuzzy cycle time is yielded considering the total fuzzy

processing time for each of the 57 tasks (see Table 1) as well precedence relations

given above. The resulted minimum fuzzy cycle time after running the proposed GA

is (8150, 8211, 8259) s. Concerning the station load for each workstation, it is

provided by the GA best solution considering the aforementioned constraints and

involves the task sequence assigned to each workstation. In particular, Workstation1

starts with task 53 and after finishing, it continues with task 24 and so on until it

finishes with task 3. Similarly, Workstation2 starts with task 22, then accomplishes

task 38 and finishes with task 10. The robotic arm is manufactured when all tasks

assigned to each workstation have been accomplished. For the problem addressed

here, the resulting task sequence and the fuzzy station time for each workstation are

presented in Table 2. The simulation test was implemented in Matlab and run on a

Pentium IV 2.13 GHz core2 PC and the CPU time was 993 sec.

Table 2. Results provided by the proposed GA.

Workstation z Task sequence (Sz)
Fuzzy station time (S

~
zt) (s)

1 52-53-24-40-35-17-5-6-29-30-3 (8159, 8207, 8253)

2 22-38-39-31-4-25-15-16-11-19-20-21-23-12-1-9-10 (8151, 8210, 8259)

3 18-42-43-48-49-56-57-32-33-34-50-51-2-36-37 (8140, 8202, 8251)

4 26-27-54-55-44-45-28-13-14-46-47-7-8-41 (8150, 8211, 8259)

Fuzzy cycle c (s) (8150, 8211, 8259)

23

Figure 5 depicts the triangular membership function for the fuzzy cycle time.

It is clear that the least likely values are 8150 and 8259 while it is found that the most

likely value is 8211.

0

0,2

0,4

0,6

0,8

1

8150 8160 8170 8180 8190 8200 8210 8220 8230 8240 8250 8260

Figure 5. The fuzzy cycle time c .

To compare the fuzzy numbers, the greatest associate ordinary number (see

Equation (2)) is used. Thus, the value for the cycle time presented in the following has

been calculated through Equation (2), Figure 6, 7 and 8 illustrate the evolution of the

GA through the generations for the best, average and worst individuals, respectively.

It is clear from Figure 6 that the best cycle time (equal to 8207.75 s corresponding to

(8150, 8211, 8259) s) is achieved in the 1459
th

 generation.

24

Figure 6. Best cycle time versus generations.

Figure 7. Average cycle time versus generations.

25

Figure 8. Worst cycle time versus generations.

6. Conclusions

Due to the fact that the nature of manufacturing systems is accompanied with

uncertainty, the main idea for this paper is to treat the problem considering fuzziness

in the operation times. Thus, the main focus of this work lies on the construction

process considering variability and ambiguity associated with real situations. In this

context, this paper studies the solution of the fuzzy assembly line balancing problem

type-2 for the real problem of constructing a robotic arm. The robot components are

formed using a number of machine tools, which are handled by a specific number of

“workers”. The metal parts of the robotic arm are manufactured in four machining

workstations. The construction process is enhanced in terms of time reduction using a

GA that takes into account fuzziness in times and is subject to the constraints imposed

by the precedence relations.

The proposed approach was tested in a real manufacturing environment, where

real data was yielded for the simulation tests. The experimental results demonstrated

26

that the approach is effective and efficient at determining the optimum fuzzy cycle

time for the accomplishment of robotic arm construction without violating the

precedence constraints. Considering future research, a U-shaped assembly line layout

could be applied, where stations work at two segments of the line facing each other

simultaneously.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research has been co-financed by the European Union (European Social Fund -

ESF) and Greek national funds through the Operational Program "Education and

Lifelong Learning" of the National Strategic Reference Framework (NSRF) -

Research Funding Program: ARCHIMEDES III. Investing in knowledge society

through the European Social Fund.

References

Ariffin, M. K. A., Fathi M., and Ismail N. 2012. “A new heuristic method to solve

straight assembly line balancing problem.” Pertanika Journal of Science &

Technology 20 (2): 355–369.

Atasagun, Y., and Kara Y. 2014. “Bacterial foraging optimization algorithm for

assembly line balancing.” Neural Computing & Applications 25: 237–250.

Avikal, S., Mishra P. K., and Jain R. 2012. “A model for assembly line balancing

problems.” Proceedings of the 2012 Students Conference on Engineering and

Systems (SCES 2012), 6199117, 1–4.

27

Blum, C. 2011. “Iterative beam search for simple assembly line balancing with a fixed

number of work stations.” SORT-Statistics and Operations Research

Transactions 35 (2): 145–164.

Dou, J., Li J, and Lv Q. 2011. “A hybrid particle swarm algorithm for assembly line

balancing problem of type 1.” Proceedings of the 2011 IEEE International

Conference on Mechatronics and Automation (ICMA 2011), 5986373, 1664–

1669.

Dou, J., Li J., and Su C. 2013. “A novel feasible task sequence-oriented discrete

particle swarm algorithm for simple assembly line balancing problem of type 1.”

International Journal of Advanced Manufacturing Technology 69 (9–12): 2445–

2457.

Dou, J., Su C., and Li J. 2011. “A discrete particle swarm optimization algorithm for

assembly line balancing problem of type 1.” Proceedings of the 3rd International

Conference on Measuring Technology and Mechatronics Automation (ICMTMA

2011), 1, 5720697, 44–47.

Fathi, M., Jahan A., Ariffin M. K. A., and Ismail N. 2011. “A new heuristic method

based on CPM in SALBP.” Journal of Industrial Engineering International 7

(13): 1–11.

Fonseca, D. J., Guest C. L., Elam M., and Karr C. L. 2005. “A fuzzy logic approach

to assembly line balancing.” Mathware & Soft Computing 12: 57–74.

Gen, M., Tsujimura Y., and Li Y. 1996. “Fuzzy assembly line balancing using genetic

algorithms.” Computers and Industrial Engineering 31 (3–4): 631–634.

Goldberg, D. E. 1989. “Genetic algorithms in search, optimization and machine

learning.” Addison-Wesley, Reading, Mass.

28

Goncalves, J. F., and Almeida J. R. D. 2002. “A hybrid genetic algorithm for

assembly line balancing.” Journal of Heuristics 8 (6): 629–642.

Gu, L., Hennequin S., Sava A., and Xie X. 2007. “Assembly line balancing problems

solved by estimation of distribution.” Proceedings of the 3rd IEEE International

Conference on Automation Science and Engineering (IEEE CASE 2007),

4341810, 123–127.

Holland, J. H. 1975. “Adaption in natural and artificial systems.” The University of

Michigan Press, Ann Harbor, MI.

Kalender, F. Y., Yilmaz M. M., and Turkbey O. 2008. “A fuzzy approach to assembly

line balancing problem.” Journal of the Faculty of Engineering and Architecture

of Gazi University 23 (1): 129–138.

Kaufmann, A., and Gupta M. M. 1985. “Introduction to Fuzzy Arithmetic.” Van

Nostrand Reinhold.

Khoshalhan, F., and Zegordi S. H. 2003. “Solving type one and type two fuzzy

assembly line balancing problems using genetic algorithms.” Amirkabir Journal

of Science and Technology 14 (55 D): 910–923.

Kilincci, O. 2010. “A Petri net-based heuristic for simple assembly line balancing

problem of type 2.” International Journal of Advanced Manufacturing

Technology 46 (1–4): 329–338.

 Kilincci, O., and Bayhan G. M. 2006. “A Petri net approach for simple assembly line

balancing problems.” International Journal of Advanced Manufacturing

Technology 30 (11–12): 1165–1173.

Kilincci, O., and Bayhan G. M. 2008. “A P-invariant-based algorithm for simple

assembly line balancing problem of type-1.” International Journal of Advanced

Manufacturing Technology 37 (3–4): 400–409.

29

Kim, Y. K., Kim Y. J., and Kim Y. 1996. “Genetic algorithms for assembly line

balancing with various objectives.” Computers & Industrial Engineering 30 (3):

397–409.

La Scalia, G., Micale R., Aiello G., and Enea M. 2013. “Solving type-2 assembly line

balancing problem with fuzzy binary linear programming.” Journal of Intelligent

and Fuzzy Systems 25 (3): 517–524.

Lapierre, S. D., Ruiz A., and Soriano P. 2006. “Balancing assembly lines with tabu

search.” European Journal of Operational Research 168(3): 826–837.

Michalewicz, Z. 1996. “Genetic algorithms + data structures = Evolution program,”

3rd edn. Springer, Berlin.

Mutlu, O., and Ozgormus E. 2012. “A fuzzy assembly line balancing problem with

physical workload constraints.” International Journal of Production Research 50

(18): 5281–5291.

Nearchou AC. Multi-objective balancing of assembly lines by population heuristics.

International Journal of Production Research 2008;46/8:2275–97.

Ozcan, U., and Toklu B. 2009. “Multiple-criteria decision-making in two-sided

assembly line balancing: A goal programming and a fuzzy goal programming

models.” Computers and Operations Research 36 (6): 1955–1965.

Rajabalipour Cheshmehgaz, H., Haron H., Kazemipour F., and Desa M. I. 2012.

“Accumulated risk of body postures in assembly line balancing problem and

modeling through a multi-criteria fuzzy-genetic algorithm.” Computers and

Industrial Engineering 63 (2): 503–512.

Scholl, A., and C. Becker. 2006. “State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing.” European Journal of

Operational Research 168 (3): 666–693.

30

Sulaiman, M. N. I., Choo Y. H., and Chong K. E. 2011. “Ant colony optimization

with look forward ant in solving assembly line balancing problem.” Proceedings

of 2011 Conference on Data Mining and Optimization (3rd DMO 2011),

5976514, 115–121.

Tang, Q., Lu S., Li M., and Floudas C. A. 2011. “Novel cellular automata algorithm

for assembly line balancing problem of type-2.” Proceedings of the 2011 6th

International Conference on Pervasive Computing and Applications (ICPCA

2011), 6106542, 422–428.

Tapkan, P., Ozbakir L., and Baykasoglu A. 2012. “A Bees Algorithm for constrained

fuzzy multi-objective two-sided assembly line balancing problem.” Optimization

Letters 6 (6): 1039–1049.

Tsujimura, Y., Gen M., and Kubota E. 1995. “Solving fuzzy assembly-line balancing

problem with genetic algorithms.” Computers and Industrial Engineering 29 (1–

4): 543–547.

Yeh, D. H., and Kao H. H. 2009. “A new bidirectional heuristic for the assembly line

balancing problem.” Computers & Industrial Engineering 57 (4): 1155–1160.

Zacharia, P. T., and Nearchou A. C. 2012. “Multi-objective fuzzy assembly line

balancing using genetic algorithms.” Journal of Intelligent Manufacturing 23 (3):

615–627.

Zadeh, L. A. 1965. “Fuzzy sets.” Information and Control 8 (3): 338–358.

Zhang, R., Chen D., Wang Y., Yang Z., and Wang X. 2007. “Study on line balancing

problem based on improved genetic algorithms.” Proceedings of the 2007

International Conference on Wireless Communications, Networking and Mobile

Computing (WiCOM 2007), 4340283, 2033–2036.

31

Zhang, Z. Q., Cheng W. M., Tang L. S., and Zhong B. 2007. “Ant algorithm with

summation rules for assembly line balancing problem.” Proceedings of 2007

International Conference on Management Science and Engineering (14th ICMSE

2007), 4421875, 369–374.

Zheng, Q., Li M., Li Y., and Tang Q. 2013. Station ant colony optimization for the

type 2 assembly line balancing problem.” International Journal of Advanced

Manufacturing Technology 66 (9–12): 1859–1870.

